代码拉取完成,页面将自动刷新
import os
import numpy as np
import cv2
from fastapi import FastAPI, File, UploadFile, Form
from ultralytics import YOLO
import io
from PIL import Image, ImageGrab
import uvicorn
current_dir = os.path.dirname(os.path.abspath(__file__))
onnx_model = YOLO(os.path.join(current_dir,'ai','best.pt'))
# 初始化 FastAPI 应用
app = FastAPI()
@app.post('/detect')
async def detect_objects(file: UploadFile = File(...), conf: float = Form(0.6)):
try:
# 将图片数据转换为PIL图像对象
img = Image.open(io.BytesIO(await file.read()))
# 使用YOLO模型进行检测
results = onnx_model(img)
# 获取第一个图片的结果
result = results[0]
# 获取所有的边界框
boxes = result.boxes
# 所有的分类名字
categorys = result.names
# print(categorys)
# 提取每个检测框的坐标
coordinates_list = []
for box in boxes:
# 获取边界框的坐标 (x1, y1, x2, y2)
coordinates = box.xyxy[0].tolist()
confidence = box.conf.item()
# 获取类别ID
class_id = int(box.cls.item())
# print(class_id, confidence)
if confidence >= conf:
# 获取类别名称
class_name = categorys[class_id]
# 存储检测结果
# 四舍五入到整数
rounded_coordinates = [round(coord) for coord in coordinates]
coordinates_list.append({
'coordinates': rounded_coordinates,
'class_name': class_name,
'confidence': confidence
})
return {'code':200,'data':{'list':coordinates_list}}
except Exception as e:
return {'code':500,'data':{}}
@app.get('/getImgMatch')
def getImgMatch(imageName: str, x1: int, y1: int, x2: int, y2: int, conf: float = 0.6):
screenshot = np.array(ImageGrab.grab(bbox=(x1, y1, x2, y2)))[:, :, ::-1]
# cv2.imwrite(f'screenshot.jpg', screenshot)
# 2. 将图片数据转换为 PIL.Image 对象
img1 = cv2.imread(f"./img/{imageName}")
img2 = np.array(screenshot)
# img2 = cv2.cvtColor(np.array(i2), cv2.COLOR_RGB2BGR)
# 灰度化
g1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
g2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
result = cv2.matchTemplate(g2, g1, cv2.TM_CCOEFF_NORMED)
# 设定阈值
if conf == '' or conf is None:
conf = 0.6
# 找到匹配区域
loc = np.where(result >= float(conf))
if loc[0].size == 0:
return {'code':400,'data':{'x': -1, 'y': -1}}
else:
# 取第一个匹配点的位置
pt = zip(*loc[::-1]).__next__()
center_x = pt[0] + img1.shape[1] // 2
center_y = pt[1] + img1.shape[0] // 2
# 在截图上绘制方框
# cv2.rectangle(img2, pt, (pt[0] + img1.shape[1], pt[1] + img1.shape[0]), (0, 0, 255), 2)
#
# # 保存带有方框的截图
# cv2.imwrite('screenshot_marked.jpg', img2)
# print(f"第一个匹配区域的中心点坐标: ({center_x}, {center_y})")
return {'code':200,'data':{'x': round(center_x), 'y': round(center_y)}}
@app.post('/getMatch')
async def getMatch(imgFile: UploadFile = File(...),imgFileBig: UploadFile = File(...), conf: float = Form(0.6)):
# 读取上传的小图文件内容
file_bytes = await imgFile.read()
# 使用 OpenCV 将二进制数据转换为图像
img1 = cv2.imdecode(np.frombuffer(file_bytes, np.uint8), cv2.IMREAD_COLOR)
# 读取上传的大图文件内容
file_big_bytes = await imgFileBig.read()
# 同样将大图转换为图像
img2 = cv2.imdecode(np.frombuffer(file_big_bytes, np.uint8), cv2.IMREAD_COLOR)
# img2 = cv2.cvtColor(np.array(i2), cv2.COLOR_RGB2BGR)
# 灰度化
g1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
g2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
result = cv2.matchTemplate(g2, g1, cv2.TM_CCOEFF_NORMED)
# 设定阈值
if conf == '' or conf is None:
conf = 0.6
# 找到匹配区域
loc = np.where(result >= float(conf))
if loc[0].size == 0:
return {'code':400,'data':{'x': -1, 'y': -1}}
else:
# 取第一个匹配点的位置
pt = zip(*loc[::-1]).__next__()
center_x = pt[0] + img1.shape[1] // 2
center_y = pt[1] + img1.shape[0] // 2
# 在截图上绘制方框
# cv2.rectangle(img2, pt, (pt[0] + img1.shape[1], pt[1] + img1.shape[0]), (0, 0, 255), 2)
#
# # 保存带有方框的截图
# cv2.imwrite('screenshot_marked.jpg', img2)
# print(f"第一个匹配区域的中心点坐标: ({center_x}, {center_y})")
return {'code':200,'data':{'x': round(center_x), 'y': round(center_y)}}
if __name__ == '__main__':
print("启动成功...^_^...监听端口:9235")
uvicorn.run(app, host="127.0.0.1", port=9235, log_level="critical", workers=1)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。