1 Star 0 Fork 3

JeffreyChan/OBCA

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
main.jl 4.55 KB
一键复制 编辑 原始数据 按行查看 历史
GXZ 提交于 2017-11-07 12:14 . initial commit
###############
# OBCA: Optimization-based Collision Avoidance - a path planner for autonomous parking
# Copyright (C) 2017
# Alexander LINIGER [[email protected]; Automatic Control Lab, ETH Zurich]
# Xiaojing ZHANG [[email protected]; MPC Lab, UC Berkeley]
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
###############
# The paper describing the theory can be found here:
# X. Zhang, A. Liniger and F. Borrelli; "Optimization-Based Collision Avoidance"; Technical Report, 2017
###############
###############
# Main file: computes Collision-Free and Minimum-Penetration trajectories for parking
###############
# function defined in setup.jl
clear()
#### problem parameters ####
# horizon
N = 80
# nominal sampling time
Ts = 0.3
#wheelbase
L = 2.7
# "nominal" shape of ego/controlled car, ego object is later rotated around the car center
# center of rear wheel axis is reference point
# size of car is: (x_upper + x_lower) + (y_upper + y_lower)
# [x_upper, y_upper, -x_lower, -y_lower ]
ego = [ 3.7 , 1 , 1 , 1 ]
##### define obstacles; for simplicity, only polyhedral obstacles are supported at this point
# obstacles are defined by vertices, which are assumed to be enumerated in clock-wise direction
# the first vertex must appear at the end of the list
nOb = 3 # number of obstacles
vOb = [4 4 4] # number of vertices of each obstacle, vector of dimenion nOb
# [ [[obst1_x1;obst1_y1],[obst1_x2;obst1_y2],[obst1_x3;obst1_y4],...,[obst1_x1;obst1_y1]] , [[obst2_x1;obst2_y1],[obst2_x2;obst2_y2],[obst2_x3;obst2_y4],...,[obst2_x1;obst2_y1]] , ... ]
lOb = [ [ [-20;5], [-1.3;5], [-1.3;-5], [-20;-5], [-20;5] ] ,
[ [1.3;5], [20;5], [20;-5], [1.3;-5], [1.3;5] ] ,
[ [-20;15], [20;15], [20;11], [-20,11], [-20;15] ] ] #vetices given in CLOCK-WISE direction
# shape of obstacles
# [x_upper, y_upper, -x_lower, -y_lower ]
ob1 = [-1.3 , 5 , 20 , 5 ]
ob2 = [ 20 , 5 , -1.3 , 5 ]
ob3 = [ 20 , 15 , 20 , -11 ]
# [x_lower, x_upper, -y_lower, y_upper ]
XYbounds = [ -15 , 15 , 1 , 10 ]
# initial state
x0 = [-6 7 0 0]
# final state
xF = [ 0 1.3 pi/2 0]
# warm start variables
xWS = zeros(4,N+1)
uWS = zeros(2,N)
timeWS = zeros(1,N+1);
# solution from distance approach
xp1 = zeros(4,N+1)
up1 = zeros(2,N)
scaleTime1 = zeros(1,N+1)
exitflag1 = 0
time1 = 0
# solution from signed distance approach
xp2 = zeros(4,N+1)
up2 = zeros(2,N)
scaleTime2 = zeros(1,N+1)
exitflag2 = 0
time2 = 0
println("**** START ****")
###### plot setup ######
# plotSetup(x0,xF,ego,L,nOb,vOb,lOb)
###### park without Obstacles ######
println("Parking without Obstacles")
xWS, uWS, timeWS = WarmStart(N,Ts,L,x0,xF,XYbounds)
close("all")
plotTraj(xWS',uWS',N,ego,L,nOb,vOb,lOb,"Trajectory without obstacles",1)
###### obtain H-rep of all obstacles ######
AOb, bOb = obstHrep(nOb, vOb, lOb)
###### park using Distance Approach ######
println("Parking using Distance Approach (Collision Avoidance)")
xp1, up1, scaleTime1, exitflag1, time1, lp1 = ParkingDist(x0,xF,N,Ts,L,ego,xWS,uWS,timeWS,XYbounds,nOb,vOb,AOb,bOb)
if exitflag1==1
println(" Problem solved SUCCESSFULLY.")
# close("all")
plotTraj(xp1',up1',N,ego,L,nOb,vOb,lOb,"Collision Avoidance with distance approach",2)
else
plotTraj(xp1',up1',N,ego,L,nOb,vOb,lOb,"Potentially infeasible solution",2)
println(" WARNING: Problem could not be solved.")
end
###### park using Signed-Distance Approach ######
println("Parking using Signed Distance Approach (Minimum Penetration Trajectory)")
xp2, up2, scaleTime2, exitflag2, time2 = ParkingSignedDist(x0,xF,N,Ts,L,ego,xWS,uWS,timeWS,XYbounds,nOb,vOb,AOb,bOb)
if exitflag2==1
println(" Problem solved SUCCESSFULLY.")
# close("all")
plotTraj(xp2',up2',N,ego,L,nOb,vOb,lOb, "Minimum Penetration with signed-distance approach",3)
else
plotTraj(xp2',up2',N,ego,L,nOb,vOb,lOb, "Potentially infeasible solution",3)
println(" WARNING: Problem could not be solved.")
end
println("**** DONE ****")
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Julia
1
https://gitee.com/jeffreychan/OBCA.git
[email protected]:jeffreychan/OBCA.git
jeffreychan
OBCA
OBCA
master

搜索帮助