代码拉取完成,页面将自动刷新
同步操作将从 djboy1021/YOLOv8-ONNX-RKNN-HORIZON-TensorRT-Segmentation 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
#!/usr/bin/env python3
import rospy
import onnxruntime
import numpy as np
import cv2, cv_bridge, time
from std_msgs.msg import Header
from sensor_msgs.msg import Image, CameraInfo
from utils import *
class onnx_ros_inference():
def __init__(self):
rospy.init_node("rknn_ros_inference", anonymous=True)
self.bridge = cv_bridge.CvBridge()
rospy.Subscriber("/camera/color/image_raw", Image, self.color_callback)
rospy.Subscriber("/aligned_depth_to_color/image_raw", Image, self.align_depth2color_callback)
rospy.Subscriber("/camera/color/camera_info", CameraInfo, self.color_info_callback)
rospy.Subscriber("/camera/depth/camera_info", CameraInfo, self.depth_info_callback)
self.segmented_image_publisher = rospy.Publisher("/segmented_image", Image, queue_size=10)
self.input_width = 640
self.input_height = 480
model_name = 'yolov8n-seg'
model_path = "./model"
ONNX_MODEL = f"{model_path}/{model_name}-{self.input_height}-{self.input_width}.onnx"
self.CLASSES = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis','snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']
self.sess = onnxruntime.InferenceSession(ONNX_MODEL)
self.images = self.sess.get_inputs()[0].name
self.output0 = self.sess.get_outputs()[0].name
self.output1 = self.sess.get_outputs()[1].name
self.img_size = 288
self.conf_thres = 0.25
self.iou_thres = 0.45
def color_info_callback(self, data):
self.color_K = np.array(data.K).reshape(3,3)
#self.color_fx = data.k[0]
#self.color_fy = data.k[4]
#self.color_u = data.k[2]
#self.color_v = data.k[5]
def depth_info_callback(self, data):
self.depth_K = np.array(data.K).reshape(3,3)
#self.depth_fx = data.k[0]
#self.depth_fy = data.k[4]
#self.depth_u = data.K[2]
#self.depth_v = data.K[5]
def color_callback(self, data):
self.color_width = data.width
self.color_height = data.height
self.color_image = self.bridge.imgmsg_to_cv2(data)
def align_depth2color_callback(self, data):
self.depth_width = data.width
self.depth_height = data.height
self.depth_image = self.bridge.imgmsg_to_cv2(data)
self.depth_image = np.array(self.depth_image, dtype=np.float32)
self.depth_array = self.depth_image/1000.0
def main(self):
r = rospy.Rate(30)
while not rospy.is_shutdown():
rospy.wait_for_message("/camera/color/image_raw",Image)
rospy.wait_for_message("/aligned_depth_to_color/image_raw",Image)
image_4c, image_3c = preprocess(self.color_image, self.input_height, self.input_width)
outputs = self.sess.run([self.output0, self.output1],{self.images: image_4c.astype(np.float32)}) # (1, 3, input height, input width)
colorlist = gen_color(len(self.CLASSES))
results = postprocess(outputs, image_4c, image_3c, self.conf_thres, self.iou_thres, classes=len(self.CLASSES)) ##[box,mask,shape]
results = results[0] ## batch=1
boxes, masks, shape = results
if isinstance(masks, np.ndarray):
if masks.ndim == 2:
masks = np.expand_dims(masks, axis=0).astype(np.float32)
vis_img = image_3c.copy()
mask_img = np.zeros_like(image_3c)
cls_list = []
center_list = []
for box, mask in zip(boxes, masks):
cls=int(box[-1])
cls_list.append(cls)
dummy_img = np.zeros_like(image_3c)
dummy_img[mask!=0] = colorlist[int(box[-1])] ## cls=int(box[-1])
mask_img[mask!=0] = colorlist[int(box[-1])] ## cls=int(box[-1])
centroid = np.mean(np.argwhere(dummy_img),axis=0)
if np.isnan(centroid).all() == False:
centroid_x, centroid_y = int(centroid[1]), int(centroid[0])
center_list.append([centroid_x, centroid_y])
vis_img = cv2.addWeighted(vis_img,0.5,mask_img,0.5,0)
for i, box in enumerate (boxes):
cls=int(box[-1])
cv2.rectangle(vis_img, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), (0,0,255),3,4)
cv2.putText(vis_img, f"{self.CLASSES[cls]}:{round(box[4],2)}", (int(box[0]), int(box[1])), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
for j in range (len(center_list)):
cv2.circle(vis_img, (center_list[j][0], center_list[j][1]), radius=5, color=(0, 0, 255), thickness=-1)
for i in range (len(self.CLASSES)):
num = cls_list.count(i)
if num != 0:
print(f"Found {num} {self.CLASSES[i]}")
cv2.imshow("mask_img", mask_img)
cv2.imshow("vis_img", vis_img)
header = Header()
header.stamp = rospy.Time.now()
header.frame_id = "camera_color_optical_frame"
self.segmented_image_publisher.publish(self.bridge.cv2_to_imgmsg(vis_img,header=header,encoding="bgr8"))
else:
print("No segmentation result")
cv2.waitKey(10)
if __name__ == '__main__':
inference = onnx_ros_inference()
inference.main()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。