代码拉取完成,页面将自动刷新
同步操作将从 hejuncheng1/mc-cnn 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
#! /usr/bin/env luajit
--[[
This script computes the 3 pixel error on all KITTI 2012 training examples with
the fast architecture. Alternatively, if the `action` variable is set to
'submit', the disparity maps for all test image pairs are computed and stored
so that they can be submitted to the KITTI evaluation server. You should see a
2.81% 3 pixel out-noc error rate on the server.
Don't use this script to fit hyperparameters; the error is computed on the
training examples.
This is not the fastest way to use the neural network---a new process is
spawned and the network is loaded from disk for each image pair---but
is probably the safest.
Usage
-----
$ ./predict_kitti.lua
0 0.0028267929719645
1 0.026568045683624
2 0.039333925127797
...
191 0.078452818068974
192 0.012351983422143
193 0.066736774940625
0.03222369495401
]]--
require 'image'
require 'torch'
require 'libadcensus'
action = 'test'
assert(action == 'test' or action == 'submit')
path = 'data.kitti/unzip'
cmd = './main.lua kitti fast -a predict' ..
' -net_fname net/net_kitti_fast_-a_train_all.t7' ..
' -left %s -right %s -disp_max 228'
if action == 'test' then
err_sum = 0
n_te = 194
dir = 'training'
elseif action == 'submit' then
n_te = 195
dir = 'testing'
end
for i = 0, n_te - 1 do
-- call mc-cnn
local im0 = ('%s/%s/image_0/%06d_10.png'):format(path, dir, i)
local im1 = ('%s/%s/image_1/%06d_10.png'):format(path, dir, i)
local im = image.loadPNG(im0)
local img_height = im:size(2)
local img_width = im:size(3)
os.execute(cmd:format(im0, im1) .. ' > /dev/null')
local disp = torch.FloatTensor(torch.FloatStorage('disp.bin')):view(1, 1, img_height, img_width)
if action == 'test' then
-- ground truth
local ground_truth = torch.FloatTensor(1, img_height, img_width)
adcensus.readPNG16(ground_truth, ('%s/training/disp_noc/%06d_10.png'):format(path, i))
-- compute the error
local mask = torch.ne(ground_truth, 0):float()
local bad = torch.add(disp, -1, ground_truth):abs():gt(3):float():cmul(mask)
local err = bad:sum() / mask:sum()
err_sum = err_sum + err
print(i, err)
elseif action == 'submit' then
adcensus.writePNG16(disp, img_height, img_width, ("out/%06d_10.png"):format(i))
print(i)
end
collectgarbage()
end
if action == 'test' then
print(err_sum / n_te)
end
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。