代码拉取完成,页面将自动刷新
同步操作将从 hejuncheng1/mc-cnn 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
#! /usr/bin/env luajit
require 'torch'
io.stdout:setvbuf('no')
for i = 1,#arg do
io.write(arg[i] .. ' ')
end
io.write('\n')
dataset = table.remove(arg, 1)
arch = table.remove(arg, 1)
assert(dataset == 'kitti' or dataset == 'kitti2015' or dataset == 'mb')
assert(arch == 'fast' or arch == 'slow' or arch == 'ad' or arch == 'census')
cmd = torch.CmdLine()
cmd:option('-gpu', 1, 'gpu id')
cmd:option('-seed', 42, 'random seed')
cmd:option('-debug', false)
cmd:option('-d', 'kitti | mb')
cmd:option('-a', 'train_tr | train_all | test_te | test_all | submit | time | predict', 'train')
cmd:option('-net_fname', '')
cmd:option('-make_cache', false)
cmd:option('-use_cache', false)
cmd:option('-print_args', false)
cmd:option('-sm_terminate', '', 'terminate the stereo method after this step')
cmd:option('-sm_skip', '', 'which part of the stereo method to skip')
cmd:option('-tiny', false)
cmd:option('-subset', 1)
cmd:option('-left', '')
cmd:option('-right', '')
cmd:option('-disp_max', '')
if dataset == 'kitti' or dataset == 'kitti2015' then
cmd:option('-hflip', 0)
cmd:option('-vflip', 0)
cmd:option('-rotate', 7)
cmd:option('-hscale', 0.9)
cmd:option('-scale', 1)
cmd:option('-trans', 0)
cmd:option('-hshear', 0.1)
cmd:option('-brightness', 0.7)
cmd:option('-contrast', 1.3)
cmd:option('-d_vtrans', 0)
cmd:option('-d_rotate', 0)
cmd:option('-d_hscale', 1)
cmd:option('-d_hshear', 0)
cmd:option('-d_brightness', 0.3)
cmd:option('-d_contrast', 1)
elseif dataset == 'mb' then
cmd:option('-hflip', 0)
cmd:option('-vflip', 0)
cmd:option('-rotate', 28)
cmd:option('-hscale', 0.8)
cmd:option('-scale', 0.8)
cmd:option('-trans', 0)
cmd:option('-hshear', 0.1)
cmd:option('-brightness', 1.3)
cmd:option('-contrast', 1.1)
cmd:option('-d_vtrans', 1)
cmd:option('-d_rotate', 3)
cmd:option('-d_hscale', 0.9)
cmd:option('-d_hshear', 0.3)
cmd:option('-d_brightness', 0.7)
cmd:option('-d_contrast', 1.1)
end
cmd:option('-rect', 'imperfect')
cmd:option('-color', 'gray')
if arch == 'slow' then
if dataset == 'kitti' or dataset == 'kitti2015' then
cmd:option('-at', 0)
cmd:option('-l1', 4)
cmd:option('-fm', 112)
cmd:option('-ks', 3)
cmd:option('-l2', 4)
cmd:option('-nh2', 384)
cmd:option('-lr', 0.003)
cmd:option('-bs', 128)
cmd:option('-mom', 0.9)
cmd:option('-true1', 1)
cmd:option('-false1', 4)
cmd:option('-false2', 10)
if dataset == 'kitti' then
cmd:option('-L1', 5)
cmd:option('-cbca_i1', 2)
cmd:option('-cbca_i2', 0)
cmd:option('-tau1', 0.13)
cmd:option('-pi1', 1.32)
cmd:option('-pi2', 24.25)
cmd:option('-sgm_i', 1)
cmd:option('-sgm_q1', 3)
cmd:option('-sgm_q2', 2)
cmd:option('-alpha1', 2)
cmd:option('-tau_so', 0.08)
cmd:option('-blur_sigma', 5.99)
cmd:option('-blur_t', 6)
elseif dataset == 'kitti2015' then
cmd:option('-L1', 5)
cmd:option('-cbca_i1', 2)
cmd:option('-cbca_i2', 4)
cmd:option('-tau1', 0.03)
cmd:option('-pi1', 2.3)
cmd:option('-pi2', 24.25)
cmd:option('-sgm_i', 1)
cmd:option('-sgm_q1', 3)
cmd:option('-sgm_q2', 2)
cmd:option('-alpha1', 1.75)
cmd:option('-tau_so', 0.08)
cmd:option('-blur_sigma', 5.99)
cmd:option('-blur_t', 5)
end
elseif dataset == 'mb' then
cmd:option('-ds', 2001)
cmd:option('-d_exp', 0.2)
cmd:option('-d_light', 0.2)
cmd:option('-l1', 5)
cmd:option('-fm', 112)
cmd:option('-ks', 3)
cmd:option('-l2', 3)
cmd:option('-nh2', 384)
cmd:option('-lr', 0.003)
cmd:option('-bs', 128)
cmd:option('-mom', 0.9)
cmd:option('-true1', 0.5)
cmd:option('-false1', 1.5)
cmd:option('-false2', 18)
cmd:option('-L1', 14)
cmd:option('-tau1', 0.02)
cmd:option('-cbca_i1', 2)
cmd:option('-cbca_i2', 16)
cmd:option('-pi1', 1.3)
cmd:option('-pi2', 13.9)
cmd:option('-sgm_i', 1)
cmd:option('-sgm_q1', 4.5)
cmd:option('-sgm_q2', 2)
cmd:option('-alpha1', 2.75)
cmd:option('-tau_so', 0.13)
cmd:option('-blur_sigma', 1.67)
cmd:option('-blur_t', 2)
end
elseif arch == 'census' then
if dataset == 'kitti' or dataset == 'kitti2015' then
cmd:option('-L1', 0)
cmd:option('-cbca_i1', 4)
cmd:option('-cbca_i2', 8)
cmd:option('-tau1', 0.01)
cmd:option('-pi1', 4)
cmd:option('-pi2', 128.00)
cmd:option('-sgm_i', 1)
cmd:option('-sgm_q1', 3)
cmd:option('-sgm_q2', 3.5)
cmd:option('-alpha1', 1.25)
cmd:option('-tau_so', 1.0)
cmd:option('-blur_sigma', 7.74)
cmd:option('-blur_t', 6)
elseif dataset == 'mb' then
cmd:option('-L1', 5)
cmd:option('-cbca_i1', 8)
cmd:option('-cbca_i2', 8)
cmd:option('-tau1', 0.22)
cmd:option('-pi1', 4.0)
cmd:option('-pi2', 32.0)
cmd:option('-sgm_i', 1)
cmd:option('-sgm_q1', 4)
cmd:option('-sgm_q2', 3)
cmd:option('-alpha1', 1.5)
cmd:option('-tau_so', 1.00)
cmd:option('-blur_sigma', 2.78)
cmd:option('-blur_t', 3)
end
elseif arch == 'ad' then
if dataset == 'kitti' or dataset == 'kitti2015' then
cmd:option('-L1', 3)
cmd:option('-cbca_i1', 0)
cmd:option('-cbca_i2', 4)
cmd:option('-tau1', 0.03)
cmd:option('-pi1', 0.76)
cmd:option('-pi2', 13.93)
cmd:option('-sgm_i', 1)
cmd:option('-sgm_q1', 3.5)
cmd:option('-sgm_q2', 2)
cmd:option('-alpha1', 2.5)
cmd:option('-tau_so', 0.01)
cmd:option('-blur_sigma', 7.74)
cmd:option('-blur_t', 6)
elseif dataset == 'mb' then
cmd:option('-L1', 5)
cmd:option('-cbca_i1', 0)
cmd:option('-cbca_i2', 4)
cmd:option('-tau1', 0.36)
cmd:option('-pi1', 0.4)
cmd:option('-pi2', 8.0)
cmd:option('-sgm_i', 1)
cmd:option('-sgm_q1', 3)
cmd:option('-sgm_q2', 4)
cmd:option('-alpha1', 2.5)
cmd:option('-tau_so', 0.08)
cmd:option('-blur_sigma', 7.74)
cmd:option('-blur_t', 1)
end
elseif arch == 'fast' then
if dataset == 'kitti' then
cmd:option('-at', 0)
cmd:option('-m', 0.2, 'margin')
cmd:option('-pow', 1)
cmd:option('-l1', 4)
cmd:option('-fm', 64)
cmd:option('-ks', 3)
cmd:option('-lr', 0.002)
cmd:option('-bs', 128)
cmd:option('-mom', 0.9)
cmd:option('-true1', 1)
cmd:option('-false1', 4)
cmd:option('-false2', 10)
cmd:option('-L1', 0)
cmd:option('-cbca_i1', 0)
cmd:option('-cbca_i2', 0)
cmd:option('-tau1', 0)
cmd:option('-pi1', 4)
cmd:option('-pi2', 55.72)
cmd:option('-sgm_i', 1)
cmd:option('-sgm_q1', 3)
cmd:option('-sgm_q2', 2.5)
cmd:option('-alpha1', 1.5)
cmd:option('-tau_so', 0.02)
cmd:option('-blur_sigma', 7.74)
cmd:option('-blur_t', 5)
elseif dataset == 'kitti2015' then
cmd:option('-at', 0)
cmd:option('-m', 0.2, 'margin')
cmd:option('-pow', 1)
cmd:option('-l1', 4)
cmd:option('-fm', 64)
cmd:option('-ks', 3)
cmd:option('-lr', 0.002)
cmd:option('-bs', 128)
cmd:option('-mom', 0.9)
cmd:option('-true1', 1)
cmd:option('-false1', 4)
cmd:option('-false2', 10)
cmd:option('-L1', 0)
cmd:option('-cbca_i1', 0)
cmd:option('-cbca_i2', 0)
cmd:option('-tau1', 0)
cmd:option('-pi1', 2.3)
cmd:option('-pi2', 18.38)
cmd:option('-sgm_i', 1)
cmd:option('-sgm_q1', 3)
cmd:option('-sgm_q2', 2)
cmd:option('-alpha1', 1.25)
cmd:option('-tau_so', 0.08)
cmd:option('-blur_sigma', 4.64)
cmd:option('-blur_t', 5)
elseif dataset == 'mb' then
cmd:option('-m', 0.2, 'margin')
cmd:option('-pow', 1)
cmd:option('-ds', 2001)
cmd:option('-d_exp', 0.2)
cmd:option('-d_light', 0.2)
cmd:option('-l1', 5)
cmd:option('-fm', 64)
cmd:option('-ks', 3)
cmd:option('-lr', 0.002)
cmd:option('-bs', 128)
cmd:option('-mom', 0.9)
cmd:option('-true1', 0.5)
cmd:option('-false1', 1.5)
cmd:option('-false2', 6)
cmd:option('-L1', 0)
cmd:option('-tau1', 0.0)
cmd:option('-cbca_i1', 0)
cmd:option('-cbca_i2', 0)
cmd:option('-pi1', 2.3)
cmd:option('-pi2', 24.3)
cmd:option('-sgm_i', 1)
cmd:option('-sgm_q1', 4)
cmd:option('-sgm_q2', 2)
cmd:option('-alpha1', 1.5)
cmd:option('-tau_so', 0.08)
cmd:option('-blur_sigma', 6)
cmd:option('-blur_t', 2)
end
end
opt = cmd:parse(arg)
if opt.print_args then
print((opt.ks - 1) * opt.l1 + 1, 'arch_patch_size')
print(opt.l1, 'arch1_num_layers')
print(opt.fm, 'arch1_num_feature_maps')
print(opt.ks, 'arch1_kernel_size')
print(opt.l2, 'arch2_num_layers')
print(opt.nh2, 'arch2_num_units_2')
print(opt.false1, 'dataset_neg_low')
print(opt.false2, 'dataset_neg_high')
print(opt.true1, 'dataset_pos_low')
print(opt.tau1, 'cbca_intensity')
print(opt.L1, 'cbca_distance')
print(opt.cbca_i1, 'cbca_num_iterations_1')
print(opt.cbca_i2, 'cbca_num_iterations_2')
print(opt.pi1, 'sgm_P1')
print(opt.pi1 * opt.pi2, 'sgm_P2')
print(opt.sgm_q1, 'sgm_Q1')
print(opt.sgm_q1 * opt.sgm_q2, 'sgm_Q2')
print(opt.alpha1, 'sgm_V')
print(opt.tau_so, 'sgm_intensity')
print(opt.blur_sigma, 'blur_sigma')
print(opt.blur_t, 'blur_threshold')
os.exit()
end
require 'cunn'
require 'cutorch'
require 'image'
require 'libadcensus'
require 'libcv'
require 'cudnn'
cudnn.benchmark = true
include('Margin2.lua')
include('Normalize2.lua')
include('BCECriterion2.lua')
include('StereoJoin.lua')
include('StereoJoin1.lua')
include('SpatialConvolution1_fw.lua')
-- include('SpatialLogSoftMax.lua')
torch.manualSeed(opt.seed)
cutorch.manualSeed(opt.seed)
cutorch.setDevice(tonumber(opt.gpu))
cmd_str = dataset .. '_' .. arch
for i = 1,#arg do
cmd_str = cmd_str .. '_' .. arg[i]
end
function isnan(n)
return tostring(n) == tostring(0/0)
end
function fromfile(fname)
local file = io.open(fname .. '.dim')
local dim = {}
for line in file:lines() do
table.insert(dim, tonumber(line))
end
if #dim == 1 and dim[1] == 0 then
return torch.Tensor()
end
local file = io.open(fname .. '.type')
local type = file:read('*all')
local x
if type == 'float32' then
x = torch.FloatTensor(torch.FloatStorage(fname))
elseif type == 'int32' then
x = torch.IntTensor(torch.IntStorage(fname))
elseif type == 'int64' then
x = torch.LongTensor(torch.LongStorage(fname))
else
print(fname, type)
assert(false)
end
x = x:reshape(torch.LongStorage(dim))
return x
end
function get_window_size(net)
ws = 1
for i = 1,#net.modules do
local module = net:get(i)
if torch.typename(module) == 'cudnn.SpatialConvolution' then
ws = ws + module.kW - 1
end
end
return ws
end
-- load training data
if dataset == 'kitti' or dataset == 'kitti2015' then
height = 350
width = 1242
disp_max = 228
n_te = dataset == 'kitti' and 195 or 200
n_input_plane = 1
err_at = 3
if opt.a == 'train_tr' or opt.a == 'train_all' or opt.a == 'test_te' or opt.a == 'test_all' or opt.a == 'submit' then
if opt.at == 1 then
function load(fname)
local X_12 = fromfile('data.kitti/' .. fname)
local X_15 = fromfile('data.kitti2015/' .. fname)
local X = torch.cat(X_12[{{1,194}}], X_15[{{1,200}}], 1)
X = torch.cat(X, dataset == 'kitti' and X_12[{{195,389}}] or X_15[{{200,400}}], 1)
return X
end
X0 = load('x0.bin')
X1 = load('x1.bin')
metadata = load('metadata.bin')
dispnoc = torch.cat(fromfile('data.kitti/dispnoc.bin'), fromfile('data.kitti2015/dispnoc.bin'), 1)
tr = torch.cat(fromfile('data.kitti/tr.bin'), fromfile('data.kitti2015/tr.bin'):add(194))
te = dataset == 'kitti' and fromfile('data.kitti/te.bin') or fromfile('data.kitti2015/te.bin'):add(194)
function load_nnz(fname)
local X_12 = fromfile('data.kitti/' .. fname)
local X_15 = fromfile('data.kitti2015/' .. fname)
X_15[{{},1}]:add(194)
return torch.cat(X_12, X_15, 1)
end
nnz_tr = load_nnz('nnz_tr.bin')
nnz_te = load_nnz('nnz_te.bin')
elseif dataset == 'kitti' then
X0 = fromfile('data.kitti/x0.bin')
X1 = fromfile('data.kitti/x1.bin')
dispnoc = fromfile('data.kitti/dispnoc.bin')
metadata = fromfile('data.kitti/metadata.bin')
tr = fromfile('data.kitti/tr.bin')
te = fromfile('data.kitti/te.bin')
nnz_tr = fromfile('data.kitti/nnz_tr.bin')
nnz_te = fromfile('data.kitti/nnz_te.bin')
elseif dataset == 'kitti2015' then
X0 = fromfile('data.kitti2015/x0.bin')
X1 = fromfile('data.kitti2015/x1.bin')
dispnoc = fromfile('data.kitti2015/dispnoc.bin')
metadata = fromfile('data.kitti2015/metadata.bin')
tr = fromfile('data.kitti2015/tr.bin')
te = fromfile('data.kitti2015/te.bin')
nnz_tr = fromfile('data.kitti2015/nnz_tr.bin')
nnz_te = fromfile('data.kitti2015/nnz_te.bin')
end
end
elseif dataset == 'mb' then
if opt.color == 'rgb' then
n_input_plane = 3
else
n_input_plane = 1
end
err_at = 1
if opt.a == 'train_tr' or opt.a == 'train_all' or opt.a == 'test_te' or opt.a == 'test_all' or opt.a == 'submit' then
data_dir = ('data.mb.%s_%s'):format(opt.rect, opt.color)
te = fromfile(('%s/te.bin'):format(data_dir))
metadata = fromfile(('%s/meta.bin'):format(data_dir))
nnz_tr = fromfile(('%s/nnz_tr.bin'):format(data_dir))
nnz_te = fromfile(('%s/nnz_te.bin'):format(data_dir))
fname_submit = {}
for line in io.open(('%s/fname_submit.txt'):format(data_dir), 'r'):lines() do
table.insert(fname_submit, line)
end
X = {}
dispnoc = {}
height = 1500
width = 1000
for n = 1,metadata:size(1) do
local XX = {}
light = 1
while true do
fname = ('%s/x_%d_%d.bin'):format(data_dir, n, light)
if not paths.filep(fname) then
break
end
table.insert(XX, fromfile(fname))
light = light + 1
if opt.a == 'test_te' or opt.a == 'submit' then
break -- we don't need to load training data
end
end
table.insert(X, XX)
fname = ('%s/dispnoc%d.bin'):format(data_dir, n)
if paths.filep(fname) then
table.insert(dispnoc, fromfile(fname))
end
end
end
end
function savePNG(fname, x, isvol)
local pred
local pred_jet = torch.Tensor(1, 3, x:size(3), x:size(4))
if isvol == true then
pred = torch.CudaTensor(1, 1, x:size(3), x:size(4))
adcensus.spatial_argmin(x, pred)
else
pred = x:double():add(1)
end
adcensus.grey2jet(pred[{1,1}]:div(disp_max):double(), pred_jet)
image.savePNG(fname, pred_jet[1])
end
function saveOutlier(fname, x0, outlier)
local img = torch.Tensor(1,3,height,img_width)
img[{1,1}]:copy(x0)
img[{1,2}]:copy(x0)
img[{1,3}]:copy(x0)
for i=1,height do
for j=1,img_width do
if outlier[{1,1,i,j}] == 1 then
img[{1,1,i,j}] = 0
img[{1,2,i,j}] = 1
img[{1,3,i,j}] = 0
elseif outlier[{1,1,i,j}] == 2 then
img[{1,1,i,j}] = 1
img[{1,2,i,j}] = 0
img[{1,3,i,j}] = 0
end
end
end
image.savePNG(fname, img[1])
end
function gaussian(sigma)
local kr = math.ceil(sigma * 3)
local ks = kr * 2 + 1
local k = torch.Tensor(ks, ks)
for i = 1, ks do
for j = 1, ks do
local y = (i - 1) - kr
local x = (j - 1) - kr
k[{i,j}] = math.exp(-(x * x + y * y) / (2 * sigma * sigma))
end
end
return k
end
function print_net(net)
local s
local t = torch.typename(net)
if t == 'cudnn.SpatialConvolution' then
print(('conv(in=%d, out=%d, k=%d)'):format(net.nInputPlane, net.nOutputPlane, net.kW))
elseif t == 'nn.SpatialConvolutionMM_dsparse' then
print(('conv_dsparse(in=%d, out=%d, k=%d, s=%d)'):format(net.nInputPlane, net.nOutputPlane, net.kW, net.sW))
elseif t == 'cudnn.SpatialMaxPooling' then
print(('max_pool(k=%d, d=%d)'):format(net.kW, net.dW))
elseif t == 'nn.StereoJoin' then
print(('StereoJoin(%d)'):format(net.disp_max))
elseif t == 'nn.Margin2' then
print(('Margin2(margin=%f, pow=%d)'):format(opt.m, opt.pow))
elseif t == 'nn.GHCriterion' then
print(('GHCriterion(m_pos=%f, m_neg=%f, pow=%d)'):format(opt.m_pos, opt.m_neg, opt.pow))
elseif t == 'nn.Sequential' then
for i = 1,#net.modules do
print_net(net.modules[i])
end
else
print(net)
end
end
function clean_net(net)
net.output = torch.CudaTensor()
net.gradInput = nil
net.weight_v = nil
net.bias_v = nil
net.gradWeight = nil
net.gradBias = nil
net.iDesc = nil
net.oDesc = nil
net.finput = torch.CudaTensor()
net.fgradInput = torch.CudaTensor()
net.tmp_in = torch.CudaTensor()
net.tmp_out = torch.CudaTensor()
if net.modules then
for _, module in ipairs(net.modules) do
clean_net(module)
end
end
return net
end
function save_net(epoch)
if arch == 'slow' then
obj = {clean_net(net_te), clean_net(net_te2), opt}
elseif arch == 'fast' then
obj = {clean_net(net_te), opt}
end
if epoch == 0 then
fname = ('net/net_%s.t7'):format(cmd_str)
else
fname = ('net/net_%s_%d.t7'):format(cmd_str, epoch)
end
torch.save(fname, obj, 'ascii')
return fname
end
if opt.a == 'train_tr' or opt.a == 'train_all' or opt.a == 'time' then
function mul32(a,b)
return {a[1]*b[1]+a[2]*b[4], a[1]*b[2]+a[2]*b[5], a[1]*b[3]+a[2]*b[6]+a[3], a[4]*b[1]+a[5]*b[4], a[4]*b[2]+a[5]*b[5], a[4]*b[3]+a[5]*b[6]+a[6]}
end
function make_patch(src, dst, dim3, dim4, scale, phi, trans, hshear, brightness, contrast)
local m = {1, 0, -dim4, 0, 1, -dim3}
m = mul32({1, 0, trans[1], 0, 1, trans[2]}, m) -- translate
m = mul32({scale[1], 0, 0, 0, scale[2], 0}, m) -- scale
local c = math.cos(phi)
local s = math.sin(phi)
m = mul32({c, s, 0, -s, c, 0}, m) -- rotate
m = mul32({1, hshear, 0, 0, 1, 0}, m) -- shear
m = mul32({1, 0, (ws - 1) / 2, 0, 1, (ws - 1) / 2}, m)
m = torch.FloatTensor(m)
cv.warp_affine(src, dst, m)
dst:mul(contrast):add(brightness)
end
-- subset training dataset
if opt.subset < 1 then
function sample(xs, p)
local perm = torch.randperm(xs:nElement()):long()
return xs:index(1, perm[{{1, xs:size(1) * p}}])
end
local tr_subset
if dataset == 'kitti' or dataset == 'kitti2015' then
tr_subset = sample(tr, opt.subset)
elseif dataset == 'mb' then
tr_2014 = sample(torch.range(11, 23):long(), opt.subset)
tr_2006 = sample(torch.range(24, 44):long(), opt.subset)
tr_2005 = sample(torch.range(45, 50):long(), opt.subset)
tr_2003 = sample(torch.range(51, 52):long(), opt.subset)
tr_2001 = sample(torch.range(53, 60):long(), opt.subset)
tr_subset = torch.cat(tr_2014, tr_2006)
tr_subset = torch.cat(tr_subset, tr_2005)
tr_subset = torch.cat(tr_subset, tr_2003)
tr_subset = torch.cat(tr_subset, tr_2001)
end
local nnz_tr_output = torch.FloatTensor(nnz_tr:size()):zero()
local t = adcensus.subset_dataset(tr_subset, nnz_tr, nnz_tr_output);
nnz_tr = nnz_tr_output[{{1,t}}]
end
collectgarbage()
if opt.a == 'train_all' then
nnz = torch.cat(nnz_tr, nnz_te, 1)
elseif opt.a == 'train_tr' or opt.a == 'time' then
nnz = nnz_tr
end
if opt.a ~= 'time' then
perm = torch.randperm(nnz:size(1))
end
local fm = torch.totable(torch.linspace(opt.fm, opt.fm, opt.l1):int())
-- network for training
if arch == 'slow' then
net_tr = nn.Sequential()
for i = 1,#fm do
net_tr:add(cudnn.SpatialConvolution(i == 1 and n_input_plane or fm[i - 1], fm[i], opt.ks, opt.ks))
net_tr:add(cudnn.ReLU(true))
end
net_tr:add(nn.Reshape(opt.bs, 2 * fm[#fm]))
for i = 1,opt.l2 do
net_tr:add(nn.Linear(i == 1 and 2 * fm[#fm] or opt.nh2, opt.nh2))
net_tr:add(cudnn.ReLU(true))
end
net_tr:add(nn.Linear(opt.nh2, 1))
net_tr:add(cudnn.Sigmoid(false))
net_tr:cuda()
criterion = nn.BCECriterion2():cuda()
-- network for testing (make sure it's synched with net_tr)
local pad = (opt.ks - 1) / 2
net_te = nn.Sequential()
for i = 1,#fm do
net_te:add(cudnn.SpatialConvolution(i == 1 and n_input_plane or fm[i - 1], fm[i], opt.ks, opt.ks, 1, 1, pad, pad))
net_te:add(cudnn.ReLU(true))
end
net_te:cuda()
net_te2 = nn.Sequential()
for i = 1,opt.l2 do
net_te2:add(nn.SpatialConvolution1_fw(i == 1 and 2 * fm[#fm] or opt.nh2, opt.nh2))
net_te2:add(cudnn.ReLU(true))
end
net_te2:add(nn.SpatialConvolution1_fw(opt.nh2, 1))
net_te2:add(cudnn.Sigmoid(true))
net_te2:cuda()
-- tie weights
net_te_all = {}
for i, v in ipairs(net_te.modules) do table.insert(net_te_all, v) end
for i, v in ipairs(net_te2.modules) do table.insert(net_te_all, v) end
local finput = torch.CudaTensor()
local i_tr = 1
local i_te = 1
while i_tr <= net_tr:size() do
local module_tr = net_tr:get(i_tr)
local module_te = net_te_all[i_te]
local skip = {['nn.Reshape']=1, ['nn.Dropout']=1}
while skip[torch.typename(module_tr)] do
i_tr = i_tr + 1
module_tr = net_tr:get(i_tr)
end
if module_tr.weight then
-- print(('tie weights of %s and %s'):format(torch.typename(module_te), torch.typename(module_tr)))
assert(module_te.weight:nElement() == module_tr.weight:nElement())
assert(module_te.bias:nElement() == module_tr.bias:nElement())
module_te.weight = torch.CudaTensor(module_tr.weight:storage(), 1, module_te.weight:size())
module_te.bias = torch.CudaTensor(module_tr.bias:storage(), 1, module_te.bias:size())
end
i_tr = i_tr + 1
i_te = i_te + 1
end
elseif arch == 'fast' then
net_tr = nn.Sequential()
for i = 1,#fm do
net_tr:add(cudnn.SpatialConvolution(i == 1 and n_input_plane or fm[i - 1], fm[i], opt.ks, opt.ks))
if i < #fm then
net_tr:add(cudnn.ReLU(true))
end
end
net_tr:add(nn.Normalize2())
net_tr:add(nn.StereoJoin1())
net_tr:cuda()
net_te = net_tr:clone('weight', 'bias')
net_te.modules[#net_te.modules] = nn.StereoJoin(1):cuda()
for i = 1,#net_te.modules do
local m = net_te:get(i)
if torch.typename(m) == 'cudnn.SpatialConvolution' then
m.padW = 1
m.padH = 1
end
end
criterion = nn.Margin2(opt.m, opt.pow):cuda()
end
print_net(net_tr)
params = {}
grads = {}
momentums = {}
for i = 1,net_tr:size() do
local m = net_tr:get(i)
if m.weight then
m.weight_v = torch.CudaTensor(m.weight:size()):zero()
table.insert(params, m.weight)
table.insert(grads, m.gradWeight)
table.insert(momentums, m.weight_v)
end
if m.bias then
m.bias_v = torch.CudaTensor(m.bias:size()):zero()
table.insert(params, m.bias)
table.insert(grads, m.gradBias)
table.insert(momentums, m.bias_v)
end
end
ws = get_window_size(net_tr)
x_batch_tr = torch.CudaTensor(opt.bs * 2, n_input_plane, ws, ws)
y_batch_tr = torch.CudaTensor(opt.bs)
x_batch_tr_ = torch.FloatTensor(x_batch_tr:size())
y_batch_tr_ = torch.FloatTensor(y_batch_tr:size())
time = sys.clock()
for epoch = 1,14 do
if opt.a == 'time' then
break
end
if epoch == 12 then
opt.lr = opt.lr / 10
end
local err_tr = 0
local err_tr_cnt = 0
for t = 1,nnz:size(1) - opt.bs/2,opt.bs/2 do
for i = 1,opt.bs/2 do
d_pos = torch.uniform(-opt.true1, opt.true1)
d_neg = torch.uniform(opt.false1, opt.false2)
if torch.uniform() < 0.5 then
d_neg = -d_neg
end
assert(opt.hscale <= 1 and opt.scale <= 1)
local s = torch.uniform(opt.scale, 1)
local scale = {s * torch.uniform(opt.hscale, 1), s}
if opt.hflip == 1 and torch.uniform() < 0.5 then
scale[1] = -scale[1]
end
if opt.vflip == 1 and torch.uniform() < 0.5 then
scale[2] = -scale[2]
end
local hshear = torch.uniform(-opt.hshear, opt.hshear)
local trans = {torch.uniform(-opt.trans, opt.trans), torch.uniform(-opt.trans, opt.trans)}
local phi = torch.uniform(-opt.rotate * math.pi / 180, opt.rotate * math.pi / 180)
local brightness = torch.uniform(-opt.brightness, opt.brightness)
assert(opt.contrast >= 1 and opt.d_contrast >= 1)
local contrast = torch.uniform(1 / opt.contrast, opt.contrast)
local scale_ = {scale[1] * torch.uniform(opt.d_hscale, 1), scale[2]}
local hshear_ = hshear + torch.uniform(-opt.d_hshear, opt.d_hshear)
local trans_ = {trans[1], trans[2] + torch.uniform(-opt.d_vtrans, opt.d_vtrans)}
local phi_ = phi + torch.uniform(-opt.d_rotate * math.pi / 180, opt.d_rotate * math.pi / 180)
local brightness_ = brightness + torch.uniform(-opt.d_brightness, opt.d_brightness)
local contrast_ = contrast * torch.uniform(1 / opt.d_contrast, opt.d_contrast)
local ind = perm[t + i - 1]
img = nnz[{ind, 1}]
dim3 = nnz[{ind, 2}]
dim4 = nnz[{ind, 3}]
d = nnz[{ind, 4}]
if dataset == 'kitti' or dataset == 'kitti2015' then
x0 = X0[img]
x1 = X1[img]
elseif dataset == 'mb' then
light = (torch.random() % (#X[img] - 1)) + 2
exp = (torch.random() % X[img][light]:size(1)) + 1
light_ = light
exp_ = exp
if torch.uniform() < opt.d_exp then
exp_ = (torch.random() % X[img][light]:size(1)) + 1
end
if torch.uniform() < opt.d_light then
light_ = math.max(2, light - 1)
end
x0 = X[img][light][{exp,1}]
x1 = X[img][light_][{exp_,2}]
end
make_patch(x0, x_batch_tr_[i * 4 - 3], dim3, dim4, scale, phi, trans, hshear, brightness, contrast)
make_patch(x1, x_batch_tr_[i * 4 - 2], dim3, dim4 - d + d_pos, scale_, phi_, trans_, hshear_, brightness_, contrast_)
make_patch(x0, x_batch_tr_[i * 4 - 1], dim3, dim4, scale, phi, trans, hshear, brightness, contrast)
make_patch(x1, x_batch_tr_[i * 4 - 0], dim3, dim4 - d + d_neg, scale_, phi_, trans_, hshear_, brightness_, contrast_)
y_batch_tr_[i * 2 - 1] = 0
y_batch_tr_[i * 2] = 1
end
x_batch_tr:copy(x_batch_tr_)
y_batch_tr:copy(y_batch_tr_)
for i = 1,#params do
grads[i]:zero()
end
net_tr:forward(x_batch_tr)
local err = criterion:forward(net_tr.output, y_batch_tr)
if err >= 0 and err < 100 then
err_tr = err_tr + err
err_tr_cnt = err_tr_cnt + 1
else
print(('WARNING! err=%f'):format(err))
end
criterion:backward(net_tr.output, y_batch_tr)
net_tr:backward(x_batch_tr, criterion.gradInput)
for i = 1,#params do
momentums[i]:mul(opt.mom):add(-opt.lr, grads[i])
params[i]:add(momentums[i])
end
end
if opt.debug then
save_net(epoch)
end
print(epoch, err_tr / err_tr_cnt, opt.lr, sys.clock() - time)
collectgarbage()
end
opt.net_fname = save_net(0)
if opt.a == 'train_tr' then
opt.a = 'test_te'
elseif opt.a == 'train_all' then
opt.a = 'submit'
end
collectgarbage()
end
if not opt.use_cache then
if arch == 'slow' then
net = torch.load(opt.net_fname, 'ascii')
net_te = net[1]
net_te2 = net[2]
elseif arch == 'fast' then
net_te = torch.load(opt.net_fname, 'ascii')[1]
net_te.modules[#net_te.modules] = nil
net_te2 = nn.StereoJoin(1):cuda()
end
end
x_batch_te1 = torch.CudaTensor()
x_batch_te2 = torch.CudaTensor()
function forward_free(net, input)
local currentOutput = input
for i=1,#net.modules do
net.modules[i].oDesc = nil
local nextOutput = net.modules[i]:updateOutput(currentOutput)
if currentOutput:storage() ~= nextOutput:storage() then
currentOutput:storage():resize(1)
currentOutput:resize(0)
end
currentOutput = nextOutput
end
net.output = currentOutput
return currentOutput
end
function fix_border(net, vol, direction)
local n = (get_window_size(net) - 1) / 2
for i=1,n do
vol[{{},{},{},direction * i}]:copy(vol[{{},{},{},direction * (n + 1)}])
end
end
function stereo_predict(x_batch, id)
local vols, vol
if arch == 'ad' then
vols = torch.CudaTensor(2, disp_max, x_batch:size(3), x_batch:size(4)):fill(0 / 0)
adcensus.ad(x_batch[{{1}}], x_batch[{{2}}], vols[{{1}}], -1)
adcensus.ad(x_batch[{{2}}], x_batch[{{1}}], vols[{{2}}], 1)
end
if arch == 'census' then
vols = torch.CudaTensor(2, disp_max, x_batch:size(3), x_batch:size(4)):fill(0 / 0)
adcensus.census(x_batch[{{1}}], x_batch[{{2}}], vols[{{1}}], -1)
adcensus.census(x_batch[{{2}}], x_batch[{{1}}], vols[{{2}}], 1)
end
if arch == 'fast' then
forward_free(net_te, x_batch:clone())
vols = torch.CudaTensor(2, disp_max, x_batch:size(3), x_batch:size(4)):fill(0 / 0)
adcensus.StereoJoin(net_te.output[{{1}}], net_te.output[{{2}}], vols[{{1}}], vols[{{2}}])
fix_border(net_te, vols[{{1}}], -1)
fix_border(net_te, vols[{{2}}], 1)
clean_net(net_te)
end
disp = {}
local mb_directions = opt.a == 'predict' and {1, -1} or {-1}
for _, direction in ipairs(dataset == 'mb' and mb_directions or {1, -1}) do
sm_active = true
if arch == 'slow' then
if opt.use_cache then
vol = torch.load(('cache/%s_%d.t7'):format(id, direction))
else
local output = forward_free(net_te, x_batch:clone())
clean_net(net_te)
collectgarbage()
vol = torch.CudaTensor(1, disp_max, output:size(3), output:size(4)):fill(0 / 0)
collectgarbage()
for d = 1,disp_max do
local l = output[{{1},{},{},{d,-1}}]
local r = output[{{2},{},{},{1,-d}}]
x_batch_te2:resize(2, r:size(2), r:size(3), r:size(4))
x_batch_te2[1]:copy(l)
x_batch_te2[2]:copy(r)
x_batch_te2:resize(1, 2 * r:size(2), r:size(3), r:size(4))
forward_free(net_te2, x_batch_te2)
vol[{1,d,{},direction == -1 and {d,-1} or {1,-d}}]:copy(net_te2.output[{1,1}])
end
clean_net(net_te2)
fix_border(net_te, vol, direction)
if opt.make_cache then
torch.save(('cache/%s_%d.t7'):format(id, direction), vol)
end
end
collectgarbage()
elseif arch == 'fast' or arch == 'ad' or arch == 'census' then
vol = vols[{{direction == -1 and 1 or 2}}]
end
sm_active = sm_active and (opt.sm_terminate ~= 'cnn')
-- cross computation
local x0c, x1c
if sm_active and opt.sm_skip ~= 'cbca' then
x0c = torch.CudaTensor(1, 4, vol:size(3), vol:size(4))
x1c = torch.CudaTensor(1, 4, vol:size(3), vol:size(4))
adcensus.cross(x_batch[1], x0c, opt.L1, opt.tau1)
adcensus.cross(x_batch[2], x1c, opt.L1, opt.tau1)
local tmp_cbca = torch.CudaTensor(1, disp_max, vol:size(3), vol:size(4))
for i = 1,opt.cbca_i1 do
adcensus.cbca(x0c, x1c, vol, tmp_cbca, direction)
vol:copy(tmp_cbca)
end
tmp_cbca = nil
collectgarbage()
end
sm_active = sm_active and (opt.sm_terminate ~= 'cbca1')
if sm_active and opt.sm_skip ~= 'sgm' then
vol = vol:transpose(2, 3):transpose(3, 4):clone()
collectgarbage()
do
local out = torch.CudaTensor(1, vol:size(2), vol:size(3), vol:size(4))
local tmp = torch.CudaTensor(vol:size(3), vol:size(4))
for _ = 1,opt.sgm_i do
out:zero()
adcensus.sgm2(x_batch[1], x_batch[2], vol, out, tmp, opt.pi1, opt.pi2, opt.tau_so,
opt.alpha1, opt.sgm_q1, opt.sgm_q2, direction)
vol:copy(out):div(4)
end
vol:resize(1, disp_max, x_batch:size(3), x_batch:size(4))
vol:copy(out:transpose(3, 4):transpose(2, 3)):div(4)
-- local out = torch.CudaTensor(4, vol:size(2), vol:size(3), vol:size(4))
-- out:zero()
-- adcensus.sgm3(x_batch[1], x_batch[2], vol, out, opt.pi1, opt.pi2, opt.tau_so,
-- opt.alpha1, opt.sgm_q1, opt.sgm_q2, direction)
-- vol:mean(out, 1)
-- vol = vol:transpose(3, 4):transpose(2, 3):clone()
end
collectgarbage()
end
sm_active = sm_active and (opt.sm_terminate ~= 'sgm')
if sm_active and opt.sm_skip ~= 'cbca' then
local tmp_cbca = torch.CudaTensor(1, disp_max, vol:size(3), vol:size(4))
for i = 1,opt.cbca_i2 do
adcensus.cbca(x0c, x1c, vol, tmp_cbca, direction)
vol:copy(tmp_cbca)
end
end
sm_active = sm_active and (opt.sm_terminate ~= 'cbca2')
if opt.a == 'predict' then
local fname = direction == -1 and 'left' or 'right'
print(('Writing %s.bin, %d x %d x %d x %d'):format(fname, vol:size(1), vol:size(2), vol:size(3), vol:size(4)))
torch.DiskFile(('%s.bin'):format(fname), 'w'):binary():writeFloat(vol:float():storage())
collectgarbage()
end
_, d = torch.min(vol, 2)
disp[direction == 1 and 1 or 2] = d:cuda():add(-1)
end
collectgarbage()
if dataset == 'kitti' or dataset == 'kitti2015' then
local outlier = torch.CudaTensor():resizeAs(disp[2]):zero()
adcensus.outlier_detection(disp[2], disp[1], outlier, disp_max)
if sm_active and opt.sm_skip ~= 'occlusion' then
disp[2] = adcensus.interpolate_occlusion(disp[2], outlier)
end
sm_active = sm_active and (opt.sm_terminate ~= 'occlusion')
if sm_active and opt.sm_skip ~= 'occlusion' then
disp[2] = adcensus.interpolate_mismatch(disp[2], outlier)
end
sm_active = sm_active and (opt.sm_terminate ~= 'mismatch')
end
if sm_active and opt.sm_skip ~= 'subpixel_enchancement' then
disp[2] = adcensus.subpixel_enchancement(disp[2], vol, disp_max)
end
sm_active = sm_active and (opt.sm_terminate ~= 'subpixel_enchancement')
if sm_active and opt.sm_skip ~= 'median' then
disp[2] = adcensus.median2d(disp[2], 5)
end
sm_active = sm_active and (opt.sm_terminate ~= 'median')
if sm_active and opt.sm_skip ~= 'bilateral' then
disp[2] = adcensus.mean2d(disp[2], gaussian(opt.blur_sigma):cuda(), opt.blur_t)
end
return disp[2]
end
if opt.a == 'predict' then
x0 = image.load(opt.left, nil, 'byte'):float()
x1 = image.load(opt.right, nil, 'byte'):float()
if x0:size(1) == 3 then
assert(x1:size(1) == 3)
x0 = image.rgb2y(x0)
x1 = image.rgb2y(x1)
end
disp_max = opt.disp_max
x0:add(-x0:mean()):div(x0:std())
x1:add(-x1:mean()):div(x1:std())
x_batch = torch.CudaTensor(2, 1, x0:size(2), x0:size(3))
x_batch[1]:copy(x0)
x_batch[2]:copy(x1)
disp = stereo_predict(x_batch, 0)
print(('Writing disp.bin, %d x %d x %d x %d'):format(disp:size(1), disp:size(2), disp:size(3), disp:size(4)))
torch.DiskFile('disp.bin', 'w'):binary():writeFloat(disp:float():storage())
os.exit()
end
if opt.a == 'submit' then
os.execute('rm -rf out/*')
if dataset == 'kitti2015' then
os.execute('mkdir out/disp_0')
end
if dataset == 'kitti' or dataset == 'kitti2015' then
examples = torch.totable(torch.range(X0:size(1) - n_te + 1, X0:size(1)))
elseif dataset == 'mb' then
examples = {}
-- for i = #X - 14, #X do
for i = #X - 29, #X do
table.insert(examples, {i, 2})
end
end
elseif opt.a == 'test_te' then
if dataset == 'kitti' or dataset == 'kitti2015' then
examples = torch.totable(te)
elseif dataset == 'mb' then
examples = {}
for i = 1,te:nElement() do
table.insert(examples, {te[i], 2})
end
table.insert(examples, {5, 3})
table.insert(examples, {5, 4})
end
elseif opt.a == 'test_all' then
if dataset == 'kitti' or dataset == 'kitti2015' then
examples = torch.totable(torch.cat(tr, te))
elseif dataset == 'mb' then
assert(false, 'test_all not supported on Middlebury.')
end
end
if opt.a == 'time' then
if opt.tiny then
x_batch = torch.CudaTensor(2, 1, 240, 320)
disp_max = 32
elseif dataset == 'kitti' then
x_batch = torch.CudaTensor(2, 1, 350, 1242)
disp_max = 228
elseif dataset == 'mb' then
x_batch = torch.CudaTensor(2, 1, 1000, 1500)
disp_max = 200
end
N = arch == 'fast' and 30 or 3
runtime_min = 1 / 0
for _ = 1,N do
cutorch.synchronize()
sys.tic()
stereo_predict(x_batch, id)
cutorch.synchronize()
runtime = sys.toc()
if runtime < runtime_min then
runtime_min = runtime
end
collectgarbage()
end
print(runtime_min)
os.exit()
end
err_sum = 0
x_batch = torch.CudaTensor(2, 1, height, width)
pred_good = torch.CudaTensor()
pred_bad = torch.CudaTensor()
for _, i in ipairs(examples) do
if dataset == 'kitti' or dataset == 'kitti2015' then
img_height = metadata[{i,1}]
img_width = metadata[{i,2}]
id = metadata[{i,3}]
x0 = X0[{{i},{},{},{1,img_width}}]
x1 = X1[{{i},{},{},{1,img_width}}]
elseif dataset == 'mb' then
i, right = table.unpack(i)
id = ('%d_%d'):format(i, right)
disp_max = metadata[{i,3}]
x0 = X[i][1][{{1}}]
x1 = X[i][1][{{right}}]
end
x_batch:resize(2, 1, x0:size(3), x0:size(4))
x_batch[1]:copy(x0)
x_batch[2]:copy(x1)
collectgarbage()
cutorch.synchronize()
sys.tic()
pred = stereo_predict(x_batch, id)
cutorch.synchronize()
runtime = sys.toc()
if opt.a == 'submit' then
if dataset == 'kitti' or dataset == 'kitti2015' then
pred_img = torch.FloatTensor(img_height, img_width):zero()
pred_img:narrow(1, img_height - height + 1, height):copy(pred[{1,1}])
if dataset == 'kitti' then
path = 'out'
elseif dataset == 'kitti2015' then
path = 'out/disp_0'
end
adcensus.writePNG16(pred_img, img_height, img_width, ("%s/%06d_10.png"):format(path, id))
elseif dataset == 'mb' then
-- savePNG(('tmp/fos_%d.png'):format(i), pred)
base = 'out/' .. fname_submit[i - (#X - #fname_submit)]
os.execute('mkdir -p ' .. base)
local method_name = 'MC-CNN-' .. (arch == 'fast' and 'fst' or 'acrt' )
adcensus.writePFM(image.vflip(pred[{1,1}]:float()), base .. '/disp0' .. method_name .. '.pfm')
local f = io.open(base .. '/time' .. method_name .. '.txt', 'w')
f:write(tostring(runtime))
f:close()
end
else
assert(not isnan(pred:sum()))
if dataset == 'kitti' or dataset == 'kitti2015' then
actual = dispnoc[{i,{},{},{1,img_width}}]:cuda()
elseif dataset == 'mb' then
actual = dispnoc[i]:cuda()
end
pred_good:resizeAs(actual)
pred_bad:resizeAs(actual)
mask = torch.CudaTensor():resizeAs(actual):ne(actual, 0)
actual:add(-1, pred):abs()
pred_bad:gt(actual, err_at):cmul(mask)
pred_good:le(actual, err_at):cmul(mask)
local err = pred_bad:sum() / mask:sum()
err_sum = err_sum + err
print(runtime, err)
if opt.debug then
local img_pred = torch.Tensor(1, 3, pred:size(3), pred:size(4))
adcensus.grey2jet(pred:double():add(1)[{1,1}]:div(disp_max):double(), img_pred)
if x0:size(2) == 1 then
x0 = torch.repeatTensor(x0:cuda(), 1, 3, 1, 1)
end
img_err = x0:mul(50):add(150):div(255)
img_err[{1,1}]:add( 0.5, pred_bad)
img_err[{1,2}]:add(-0.5, pred_bad)
img_err[{1,3}]:add(-0.5, pred_bad)
img_err[{1,1}]:add(-0.5, pred_good)
img_err[{1,2}]:add( 0.5, pred_good)
img_err[{1,3}]:add(-0.5, pred_good)
if dataset == 'kitti' or dataset == 'kitti2015' then
gt = dispnoc[{{i},{},{},{1,img_width}}]:cuda()
elseif dataset == 'mb' then
gt = dispnoc[i]:cuda():resize(1, 1, pred:size(3), pred:size(4))
end
local img_gt = torch.Tensor(1, 3, pred:size(3), pred:size(4)):zero()
adcensus.grey2jet(gt:double():add(1)[{1,1}]:div(disp_max):double(), img_gt)
img_gt[{1,3}]:cmul(mask:double())
image.save(('tmp/%s_%s_gt.png'):format(dataset, id), img_gt[1])
image.save(('tmp/%s_%s_%s_pred.png'):format(dataset, arch, id), img_pred[1])
image.save(('tmp/%s_%s_%s_err.png'):format(dataset, arch, id), img_err[1])
-- adcensus.grey2jet(pred:double():add(1)[{1,1}]:div(disp_max):double(), img_pred)
-- if x0:size(2) == 1 then
-- x0 = torch.repeatTensor(x0:cuda(), 1, 3, 1, 1)
-- end
-- img_err = x0:mul(50):add(150):div(255)
-- img_err[{1,1}]:add( 0.3, pred_bad)
-- img_err[{1,2}]:add(-0.3, pred_bad)
-- img_err[{1,3}]:add(-0.3, pred_bad)
-- img_err[{1,1}]:add(-0.3, pred_good)
-- img_err[{1,2}]:add( 0.3, pred_good)
-- img_err[{1,3}]:add(-0.3, pred_good)
--
-- img = torch.Tensor(3, pred:size(3) * 2, pred:size(4))
-- img:narrow(2, 0 * pred:size(3) + 1, pred:size(3)):copy(img_pred)
-- img:narrow(2, 1 * pred:size(3) + 1, pred:size(3)):copy(img_err)
--
-- image.savePNG(('tmp/err_%d_%.5f_%s.png'):format(opt.gpu, err, id), img)
end
end
end
if opt.a == 'submit' then
-- zip
os.execute('cd out; zip -r submission.zip . -x .empty')
else
print(err_sum / #examples)
end
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。