1 Star 0 Fork 0

zhangdaolong/speccpu2006-config-flags

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
Intel-ic91-ipf.xml 18.30 KB
一键复制 编辑 原始数据 按行查看 历史
zhangdaolong 提交于 2024-04-07 09:28 . add flag file
<?xml version="1.0"?>
<!DOCTYPE flagsdescription SYSTEM "http://www.spec.org/dtd/cpuflags1.dtd">
<flagsdescription>
<!-- filename to begin with "Intel-ic91-ipf" -->
<filename>Intel-ic91-ipf</filename>
<title>SPEC CPU2006 Flag Description for the Intel(R) C++ Compiler 9.1
for Intel(R) Fortran Compiler 9.1 for IPF Linux64 X</title>
<header>
<![CDATA[
<p style="text-align: left; color: red; font-size: larger; background-color: black">
Copyright &copy; 2006 Intel Corporation. All Rights Reserved.</p>
]]>
</header>
<!--
******************************************************************************************************
* Compilers
******************************************************************************************************
-->
<flag name="intel_icc" class="compiler" regexp="(?:/\S+/)?icc\b">
<![CDATA[
<p>Invoke the Intel C++ compiler for IPF Linux64 to compile C applications</p>
]]>
</flag>
<flag name="intel_icpc" class="compiler" regexp="(?:/\S+/)?icpc\b">
<![CDATA[
<p>Invoke the Intel C++ compiler for IPF Linux64 to compiler C++ applications</p>
]]>
</flag>
<flag name="intel_ifort" class="compiler" regexp="(?:/\S+/)?ifort\b">
Invoke the Intel Fortran compiler for IPF Linux64
</flag>
<flag name="intel_compiler_c99_mode" class="compiler" regexp="(?:/\S+/)?-c99\b">
Invoke the Intel C++ compiler in C99 mode for IPF Linux64
</flag>
<!--
******************************************************************************************************
* Other (diagnostic message control)
******************************************************************************************************
-->
<flag name="f-w" class="other" regexp="-w\b">
Disable all warnings. Display error messages only.
</flag>
<!--
******************************************************************************************************
* Portability
******************************************************************************************************
-->
<flag name="no_for_main" class="portability" regexp="(?:/\S+/)?-nofor_main\b">
<![CDATA[
<p>For mixed-language benchmarks, tell the compiler that the main program is not written in Fortran </p>
]]>
</flag>
<!--
******************************************************************************************************
* Optimizations
******************************************************************************************************
-->
<flag name="f-O1" class="optimization" regexp="-O1\b">
<![CDATA[
<p>Enables optimizations for speed and disables some optimizations that <br />
increase code size and affect speed. <br />
To limit code size, this option: <br />
- Enables global optimization; this includes data-flow analysis,
code motion, strength reduction and test replacement, split-lifetime
analysis, and instruction scheduling. <br />
- Disables intrinsic recognition and intrinsics inlining. <br />
The O1 option may improve performance for applications with very large
code size, many branches, and execution time not dominated by code within loops. <br />
On IPF Linux64 platforms, -O1 disable software pipelining and global code scheduling.
On Intel Itanium processors, this option also enables optimizations for server applications <br />
(straight-line and branch-like code with a flat profile).
</p>
<p style="margin-left: 25px">
-unroll0, -fbuiltin, -mno-ieee-fp, -fomit-frame-pointer (same as -fp), -ffunction-sections </p>
]]>
<include flag="f-unrolln"/>
<include flag="f-builtin"/>
<include flag="f-mno-ieee-fp"/>
<include flag="f-fomit-frame-pointer"/>
<include flag="f-ffunction-sections"/>
</flag>
<flag name="f-O2" class="optimization" regexp="-O2\b">
<![CDATA[
<p>Enables optimizations for speed. This is the generally recommended
optimization level. This option also enables: <br />
- Inlining of intrinsics<br />
- Intra-file interprocedural optimizations, which include: <br />
- inlining<br />
- constant propagation<br />
- forward substitution<br />
- routine attribute propagation<br />
- variable address-taken analysis<br />
- dead static function elimination<br />
- removal of unreferenced variables<br />
- The following capabilities for performance gain: <br />
- constant propagation<br />
- copy propagation<br />
- dead-code elimination<br />
- global register allocation<br />
- global instruction scheduling and control speculation<br />
- loop unrolling<br />
- optimized code selection<br />
- partial redundancy elimination<br />
- strength reduction/induction variable simplification<br />
- variable renaming<br />
- exception handling optimizations<br />
- tail recursions<br />
- peephole optimizations<br />
- structure assignment lowering and optimizations<br />
- dead store elimination<br /> </p>
]]>
<include flag="f-O1"/>
</flag>
<flag name="f-O3" class="optimization" regexp="-O3\b">
<![CDATA[
<p>Enables O2 optimizations plus more aggressive optimizations,
such as prefetching, scalar replacement, and loop and memory
access transformations. Enables optimizations for maximum speed,
such as: <br />
- Loop unrolling, including instruction scheduling<br />
- Code replication to eliminate branches<br />
- Padding the size of certain power-of-two arrays to allow
more efficient cache use.<br />
On Intel Itanium processors, the O3 option enables optimizations
for technical computing applications (loop-intensive code): <br />
loop optimizations and data prefetch.
The O3 optimizations may not cause higher performance unless loop and
memory access transformations take place. The optimizations may slow
down code in some cases compared to O2 optimizations. <br />
The O3 option is recommended for applications that have loops that heavily
use floating-point calculations and process large data sets.
</p>
]]>
<include flag="f-O2"/>
</flag>
<flag name="f-ip" class="optimization" regexp="-ip\b">
This option enables additional interprocedural optimizations for single
file compilation. These optimizations are a subset of full intra-file
interprocedural optimizations. One of these optimizations enables the
compiler to perform inline function expansion for calls to functions
defined within the current source file.
</flag>
<flag name="f-ipo" class="optimization" regexp="-ipo\b">
<![CDATA[
<p>Multi-file ip optimizations that includes:<br />
- inline function expansion<br />
- interprocedural constant propogation<br />
- dead code elimination<br />
- propagation of function characteristics<br />
- passing arguments in registers<br />
- loop-invariant code motion</p>
]]>
</flag>
<flag name="f-fast" class="optimization" regexp="-fast\b">
<![CDATA[
<p>The -fast option enhances execution speed across the entire program
by including the following options that can improve run-time performance:</p>
<p style="text-indent: -45px;margin-left: 45px">
-O3&nbsp;&nbsp;&nbsp;(maximum speed and high-level optimizations)</p>
<p style="text-indent: -45px;margin-left: 45px">
-ipo&nbsp;(enables interprocedural optimizations across files)</p>
<p style="text-indent: -45px;margin-left: 45px">
-static&nbsp;(link libraries statically)</p>
<p>To override one of the options set by /fast, specify that option after the
-fast option on the command line. The options set by /fast may change from
release to release.</p>
]]>
<include flag="f-O3"/>
<include flag="f-ipo"/>
<include flag="f-static"/>
</flag>
<flag name="f-prof_gen" class="optimization" regexp="-prof_gen\b">
<![CDATA[
<p>Instrument program for profiling for the first phase of
two-phase profile guided otimization. This instrumentation gathers information
about a program's execution paths and data values but does not gather
information from hardware performance counters. The profile instrumentation
also gathers data for optimizations which are unique to profile-feedback
optimization.</p>
]]>
</flag>
<flag name="f-prof_use" class="optimization" regexp="-prof_use\b">
<![CDATA[
<p>Instructs the compiler to produce a profile-optimized
executable and merges available dynamic information (.dyn)
files into a pgopti.dpi file. If you perform multiple
executions of the instrumented program, -Qprof_use merges
the dynamic information files again and overwrites the
previous pgopti.dpi file.<br />
Without any other options, the current directory is
searched for .dyn files</p>
]]>
</flag>
<flag name="f-unrolln" class="optimization" regexp="-unroll\d+\b">
Tells the compiler the maximum number of times (n) to unroll loops.
</flag>
<flag name="f-builtin" class="optimization" regexp="-Oi-\b">
Enables inline expansion of all intrinsic functions.
</flag>
<flag name="f-mno-ieee-fp" class="optimization" regexp="-Oi-\b">
<![CDATA[
<p>Disables conformance to the ANSI C and IEEE 754 standards for
floating-point arithmetic.</p>
]]>
</flag>
<flag name="f-fomit-frame-pointer" class="optimization" regexp="-Oy\b">
Allows use of EBP as a general-purpose register in optimizations.
</flag>
<flag name="f-ffunction-sections" class="optimization" regexp="-Os\b">
<![CDATA[
<p>Places each function in its own COMDAT section.</p>
]]>
</flag>
<flag name="f-Ob_n" class="optimization" regexp="-Ob(0|1|2)\b">
<![CDATA[
<p>Specifies the level of inline function expansion.</p>
<p style="text-indent: -45px;margin-left: 45px">
Ob0 - Disables inlining of user-defined functions. Note that
statement functions are always inlined.</p>
<p style="text-indent: -45px;margin-left: 45px">
Ob1 - Enables inlining when an inline keyword or an inline
attribute is specified. Also enables inlining according
to the C++ language.</p>
<p style="text-indent: -45px;margin-left: 45px">
Ob2 - Enables inlining of any function at the compiler's
discretion. </p>
]]>
</flag>
<flag name="f-static" class="optimization" regexp="-static\b">
<![CDATA[
<p>-static prevents linking with shared libraries. </p>
]]>
</flag>
<flag name="f-GF" class="optimization" regexp="-GF\b">
This option enables read only string-pooling optimization.
</flag>
<flag name="f-Gf" class="optimization" regexp="-Gf\b">
This option enables read/write string-pooling optimization.
</flag>
<flag name="f-Gs" class="optimization" regexp="-Gs\b">
<![CDATA[
<p>This option disables stack-checking for routines with 4096 bytes
of local variables and compiler temporaries.</p>
]]>
</flag>
<flag name="link_force_multiple1" class="optimization" regexp="\b\-Fe\$\@\-link\b">
Enable SmartHeap library usage by forcing the linker to
ignore multiple definitions
</flag>
<flag name="link_force_multiple2" class="optimization" regexp=".*FORCE.*MULTIPLE\b">
Enable SmartHeap library usage by forcing the linker to
ignore multiple definitions
</flag>
<flag name="no-prefetch" class="optimization" regexp="-no-prefetch\b">
Disables the insertion of software prefetching by the compiler.
Default is -prefetch.
</flag>
<flag name="opt-mod-versioning" class="optimization" regexp="-opt-mod-versioning\b">
This option turns on versioning of modulo operations for
certain types of operands (e.g. x%y where y is dynamically
determined to be a power of 2). The default is modulo
versioning off. This option may improve performance.
Versioning of modulo operations commonly results in possibly
large speedups for x%y where y is a power of 2. However,
the optimization could hurt performance slightly if y is
not a power of 2.
</flag>
<flag name="unroll-aggressive" class="optimization" regexp="-unroll-aggressive\b">
This option tells the compiler to use more aggressive unrolling
for certain loops. The default is -no-unroll-aggressive
(the compiler uses less aggressive default heuristics when
unrolling loops). This option may improve performance.
On the Itanium architecture, this option enables additional
complete unrolling for loops that have multiple exits or outer
loops that have a small constant trip count.
</flag>
<flag name="opt-prefetch-next-iteration" class="optimization" regexp="-opt-prefetch-next-iteration\b">
This option controls the prefetches that are issued for a
memory access in the next iteration, typically done in a
pointer-chasing loop. This option should improve performance.
The default is -no-opt-prefetch-next-iteration (next iteration
prefetch off).
</flag>
<flag name="no-opt-prefetch-initial-values" class="optimization" regexp="-no-opt-prefetch-initial-values\b">
This option controls the prefetches that are issued before
the loop is entered. These prefetches target the initial
iterations of the loop. The default is -opt-prefetch-initial-values
(prefetch for initial iterations on) at -O1 and higher optimization
levels.
</flag>
<flag name="no-opt-loadpair" class="optimization" regexp="-no-opt-loadpair\b">
This option controls the loadpair optimization. The loadpair
optimization is enabled by default when -O3 is used for
Itanium. -no-opt-loadpair turns the loadpair optimization off.
</flag>
<flag name="inline-factor" class="optimization" regexp="-inline-factor(?:=\S*)?">
Specifies the percentage multiplier that should be applied to all inlining options
that define upper limits. The value is a positive integer specifying the
percentage value. The default value is 100 (a factor of 1).
</flag>
<flag name="IPF-fp-relaxed" class="optimization" regexp="[-/](IPF-fp-relaxed|IPF_fp_relaxed)\b">
Enables use of faster but slightly less accurate code sequences for math
functions, including sqrt, reciprocal sqrt, divide and reciprocal. When
compared to strict IEEE* precision, this option slightly reduces the
accuracy of floating-point calculations performed by these functions,
usually limited to the least significant digit.
This option also performs reassociation transformations, which can alter the
order of operations, over a larger scope. The increased reasssociation
enables generation of more optimal sequences of floating-point multiply-add
instructions than not using this option. Note that use of floating-point
multiply-add can cause programs to produce different numerical results due
to changes in rounding.
</flag>
<flag name="ftn-ansi-alias" class="optimization" regexp="-ansi-alias\b" compilers="intel_ifort">
Tells the compiler to assume the program does adhere to
to the Fortran 95 Standard type
aliasability rules (default).
</flag>
<flag name="ansi_alias" class="optimization" regexp="[-/](ansi-alias|ansi_alias)\b" compilers="intel_icc,intel_icpc">
Tells the compiler to assume the program does adhere to
the rules defined in the ISO C Standard. The default is to not assume such
adherence. If your C/C++ program adheres to these
rules, then -ansi-alias will allow the compiler to optimize
more aggressively. If it doesn't adhere to these
rules, then assuming so can cause the compiler to generate
incorrect code.
</flag>
<flag name="no-alias-args" class="optimization" regexp="-no-alias-args\b" compilers="intel_icc,intel_icpc">
Do not assume arguments may be aliased. (DEFAULT = -alias-args).
</flag>
<flag name="fno-alias" class="optimization" regexp="-fno-alias\b">
Tells the compiler not to assume aliasing in the program (DEFAULT = -falias).
</flag>
<flag name="auto_ilp32" class="optimization" regexp="[-/](auto_ilp32|auto-ilp32)\b" compilers="intel_icc,intel_icpc">
Instructs the compiler to analyze and transform the program so that 64-bit pointers are shrunk to 32-bit
pointers, and 64-bit longs (on Linux) are shrunk into 32-bit longs wherever it is legal and safe to do so.
In order for this option to be effective the compiler must be able to optimize using the -ipo option and
must be able to analyze all library or external calls the program makes.
This option requires that the size of the program executable never exceeds 2 (to the 32nd power) bytes and
all data values can be represented within 32 bits. If the program can run correctly in a 32-bit system,
these requirements are implicitly satisfied. If the program violates these size restrictions, unpredictable
behavior might occur.
</flag>
<flag name="linker_muldefs" class="optimization" regexp="-Wl,-z,muldefs\b">
The -Wl option directs the compiler to pass a list of arguments
to the linker. In this case, "-z muldefs" is passed to the
linker. For the Gnu linker (ld), the "-z keyword" option accepts
several recognized keywords. Keyword "muldefs" allows multiple
definitions. The muldefs keyword will enable, for example,
linking with third party libraries like SmartHeap from
Microquill.
</flag>
<flag name="SmartHeap_splitter"
class="optimization"
regexp="/\S+/(libsmartheap(?:C64|64)?.a)\b">
<example>Rule to eat the paths from SmartHeap library inclusion.</example>
<include text="$1" />
<display enable="0" />
</flag>
<flag name="SmartHeap" class="optimization" regexp="libsmartheap(C64|64).a\b">
MicroQuill SmartHeap Library available from http://www.microquill.com/
</flag>
<flag name="SmartHeap2" class="optimization" regexp="-L /turkey2/jbaron/cpu2006-1.0/SmartHeap_7.01/lib/ -lsmartheap64">
MicroQuill SmartHeap Library available from http://www.microquill.com/
</flag>
<flag name="MPI" class="optimization" regexp="-lmpi\b">
MPI library.
</flag>
</flagsdescription>
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/zhangdaolong/speccpu2006-config-flags.git
[email protected]:zhangdaolong/speccpu2006-config-flags.git
zhangdaolong
speccpu2006-config-flags
speccpu2006-config-flags
master

搜索帮助