1 Star 0 Fork 0

zhangdaolong/speccpu2006-config-flags

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
Intel-ic14.0-official-linux64.xml 43.37 KB
一键复制 编辑 原始数据 按行查看 历史
zhangdaolong 提交于 2024-04-07 09:28 . add flag file
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041
<?xml version="1.0"?>
<!DOCTYPE flagsdescription SYSTEM "http://www.spec.org/dtd/cpuflags2.dtd">
<flagsdescription>
<!--
######################################################################################################
This file is centrally maintained. You should not have
to edit it; if you see a need for improvements, please
write to SPEC CPU technical support (see
http://www.spec.org/cpu2006/Docs/techsupport.html )
If you DO change it, you MUST change the filename tag
just below, or your changes may be lost!
######################################################################################################
-->
<filename>Intel-ic14.0-official-linux64</filename>
<title>SPEC CPU2006 Flag Description for the Intel(R) C++ and Fortran Compiler 14.0
for IA32 and Intel 64 applications </title>
<!--
******************************************************************************************************
* Submit commands
******************************************************************************************************
-->
<submit_command>
<![CDATA[
<dl>
<dt><b>submit= MYMASK=`printf '0x%x' $((1&lt;&lt;$SPECCOPYNUM))`; /usr/bin/taskset $MYMASK $command </b></dt>
<dd>When running multiple copies of benchmarks, the SPEC config file feature <b>submit</b> is used to cause individual jobs to be bound to
specific processors. This specific submit command, using taskset, is used for Linux64 systems without numactl. <br />
Here is a brief guide to understanding the specific command which will be found in the config file:
<ul>
<li><b>/usr/bin/taskset [options] [mask] [pid | command [arg] ... ]</b>: <br/>
taskset is used to set or retreive the CPU affinity of a running
process given its PID or to launch a new COMMAND with a given CPU
affinity. The CPU affinity is represented as a bitmask, with the
lowest order bit corresponding to the first logical CPU and highest
order bit corresponding to the last logical CPU. When the taskset
returns, it is guaranteed that the given program has been scheduled
to a specific, legal CPU, as defined by the mask setting.</li>
<li><b>[mask]</b>: The bitmask (in hexadecimal) corresponding to a specific
SPECCOPYNUM. The specific example above, computes this mask value in the variable $MYMASK.
The value of this mask for the first copy of a
rate run will be 0x00000001, for the second copy of the rate will
be 0x00000002 etc. Thus, the first copy of the rate run will have a
CPU affinity of CPU0, the second copy will have the affinity CPU1
etc.</li>
<li><b>$command</b>: Program to be started, in this case, the benchmark instance to be started.</li>
</ul>
</dd>
<dt><b>submit= numactl --localalloc --physcpubind=$SPECCOPYNUM $command </b></dt>
<dd> When running multiple copies of benchmarks, the SPEC config file feature <b>submit</b> is used to cause individual jobs to be bound to
specific processors. This specific submit command is used for Linux64 systems with support for numactl. <br />
Here is a brief guide to understanding the specific command which will be found in the config file:
<ul>
<li>syntax: numactl [--interleave=nodes] [--preferred=node] [--physcpubind=cpus] [--cpunodebind=nodes] [--membind=nodes] [--localalloc] command args ...</li>
<li>numactl runs processes with a specific NUMA scheduling or memory placement policy. The policy is set for a command and inherited by all of its children. </li>
<li>"--localalloc" instructs numactl to keep a process memory on the local node while "-m" specifies which node(s) to place a process memory. </li>
<li>"--physcpubind" specifies which core(s) to bind the process. In this case, copy 0 is bound to processor 0 etc.</li>
<li> For full details on using numactl, please refer to your Linux documentation, 'man numactl'</li>
</ul>
</dd>
</dl>
]]>
</submit_command>
<!--
******************************************************************************************************
* S/W Environment
******************************************************************************************************
-->
<sw_environment>
<![CDATA[
<dl>
<dt><b>numactl --interleave=all "runspec command" </b></dt>
<dd> Launching a process with numactl --interleave=all sets the memory interleave policy so that memory will be allocated using round robin on nodes.
When memory cannot be allocated on the current interleave target fall back to other nodes.</dd>
<dt><b>KMP_STACKSIZE </b></dt>
<dd> Specify stack size to be allocated for each thread. </dd>
<dt><b>KMP_AFFINITY = granularity=fine,scatter </b></dt>
<dd>The value for the environment variable KMP_AFFINITY affects how the threads from an auto-parallelized program are scheduled across processors. <br/>
Specifying granularity=fine selects the finest granularity level, causes each OpenMP thread to be bound to a single thread context. <br/>
This ensures that there is only one thread per core on cores supporting HyperThreading Technology<br/>
Specifying scatter distributes the threads as evenly as possible across the entire system. <br/>
Hence a combination of these two options, will spread the threads evenly across sockets, with one thread per physical core. <br/> </dd>
<dt><b>OMP_NUM_THREADS </b></dt>
<dd>Sets the maximum number of threads to use for OpenMP* parallel regions if no
other value is specified in the application. This environment variable
applies to both -openmp and -parallel (Linux and Mac OS X) or /Qopenmp and /Qparallel (Windows).
Example syntax on a Linux system with 8 cores:
export OMP_NUM_THREADS=8 </dd>
<dt><b>Set stack size to unlimited</b></dt>
<dd>The command "ulimit -s unlimited" is used to set the stack size limit to unlimited.
</dd>
<dt><b>Free the file system page cache</b></dt>
<dd>The command "echo 1> /proc/sys/vm/drop_caches" is used to free up the filesystem page cache.
</dd>
</dl>
<h3> Red Hat Specific features </h3>
<dl>
<dt><b>Transparent Huge Pages</b></dt>
<dd>On RedHat EL 6 and later, Transparent Hugepages increase the memory page size from 4 kilobytes to 2 megabytes. Transparent Hugepages provide significant performance advantages on systems with highly contended resources and large memory workloads.
If memory utilization is too high or memory is badly fragmented which prevents hugepages being allocated, the kernel will assign smaller 4k pages instead. <br/>
Hugepages are used by default unless the /sys/kernel/mm/redhat_transparent_hugepage/enabled field is changed from its RedHat EL6 default of 'always'.
</dd>
</dl>
]]>
</sw_environment>
<header>
<![CDATA[
<p style="text-align: left; color: red; font-size: larger; background-color: black">
Copyright &copy; 2006 Intel Corporation. All Rights Reserved.</p>
]]>
</header>
<!--
******************************************************************************************************
* Compilers
******************************************************************************************************
-->
<flag name="intel_icc" class="compiler" regexp="(?=\s|^)icc.* -m32(?=\s|$)">
<![CDATA[
<p> Invoke the Intel C compiler 14.0 for IA32 applications.</p>
<p> You need binutils 2.17 or later with this compiler </p>
]]>
</flag>
<flag name="intel_icpc" class="compiler" regexp="(?=\s|^)icpc.* -m32(?=\s|$)">
<![CDATA[
<p> Invoke the Intel C++ compiler 14.0 for IA32 applications.</p>
<p> You need binutils 2.17 or later with this compiler </p>
]]>
</flag>
<flag name="intel_ifort" class="compiler" regexp="(?=\s|^)ifort.* -m32(?=\s|$)">
<![CDATA[
<p> Invoke the Intel Fortran compiler 14.0 for IA32 applications.</p>
<p> You need binutils 2.17 or later with this compiler </p>
]]>
</flag>
<flag name="intel_icc_64bit" class="compiler" regexp="icc.* -m64(?=\s|$)">
<![CDATA[
<p>Invoke the Intel C compiler 14.0 for Intel 64 applications </p>
<p> You need binutils 2.17 or later with this compiler </p>
]]>
</flag>
<flag name="intel_icpc_64bit" class="compiler" regexp="icpc.* -m64(?=\s|$)">
<![CDATA[
<p>Invoke the Intel C++ compiler 14.0 for Intel 64 applications </p>
<p> You need binutils 2.17 or later with this compiler </p>
]]>
</flag>
<flag name="intel_ifort_64bit" class="compiler" regexp="(?=\s|^)ifort.* -m64(?=\s|$)">
<![CDATA[
<p> Invoke the Intel Fortran compiler 14.0 for Intel 64 applications.</p>
<p> You need binutils 2.17 or later with this compiler </p>
]]>
</flag>
<!--
******************************************************************************************************
* Portability
******************************************************************************************************
-->
<flag name="lowercase_routine_name" class="portability" regexp="(?:/\S+/)?-Qlowercase(?=\s|$)">
<![CDATA[
<p>For mixed-language benchmarks, tell the compiler to convert routine names to
lowercase for compatibility</p>
]]>
</flag>
<flag name="add-underscore_to_routine_name" class="portability" regexp="(?:/\S+/)?\/assume\:underscore(?=\s|$)">
<![CDATA[
<p>For mixed-language benchmarks, tell the compiler to assume that routine
names end with an underscore</p>
]]>
</flag>
<flag name="assume_cplusplus_sources" class="portability" regexp="(?:/\S+/)?-TP(?=\s|$)">
Tell the compiler to treat source files as C++ regardless of the file extension
</flag>
<!--
******************************************************************************************************
* Optimizations
******************************************************************************************************
-->
<flag name="link_for_large_pages_64bit" class="optimization" regexp="-B.*/usr/share/libhugetlbfs/.*-Wl,-melf_x86_64.*-Wl,-hugetlbfs-link=BDT(?=\s|$)">
<example>Link 64-bit applications to use large pages</example>
<![CDATA[
<p>Linker options to link a 64-bit application to use large pages for the .bss, .data and .text sections.</p>
]]>
</flag>
<flag name="link_for_large_pages_32bit" class="optimization" regexp="-B.*/usr/share/libhugetlbfs/ -Wl,-hugetlbfs-link=BDT(?=\s|$)">
<example>Link 32-bit applications to use large pages</example>
<![CDATA[
<p>Linker options to link a 32-bit application to use large pages for the .bss, .data and .text sections.</p>
]]>
</flag>
<flag name="f-O1" class="optimization" regexp="-O1(?=\s|$)">
<![CDATA[
<p>Enables optimizations for speed and disables some optimizations that increase code size and affect speed. <br />
To limit code size, this option: </p>
<ul>
<li> Enables global optimization; this includes data-flow analysis,
code motion, strength reduction and test replacement, split-lifetime
analysis, and instruction scheduling. </li>
<li> Disables intrinsic recognition and intrinsics inlining. </li>
</ul>
<p> The O1 option may improve performance for applications with very large
code size, many branches, and execution time not dominated by code within loops. </p>
-O1 sets the following options:<br />
-funroll-loops0, -fno-builtin, -mno-ieee-fp, -fomit-framepointer, -ffunction-sections, -ftz
]]>
<include flag="f-funroll-loops"/>
<include flag="f-fno-builtin"/>
<include flag="f-mno-ieee-fp"/>
<include flag="f-fomit-framepointer"/>
<include flag="f-ffunction-sections"/>
<include flag="f-ftz"/>
</flag>
<flag name="f-O2" class="optimization" regexp="-O2(?=\s|$)">
<![CDATA[
<p>Enables optimizations for speed. This is the generally recommended
optimization level. This option also enables: <br />
- Inlining of intrinsics<br />
- Intra-file interprocedural optimizations, which include: <br />
- inlining<br />
- constant propagation<br />
- forward substitution<br />
- routine attribute propagation<br />
- variable address-taken analysis<br />
- dead static function elimination<br />
- removal of unreferenced variables<br />
- The following capabilities for performance gain: <br />
- constant propagation<br />
- copy propagation<br />
- dead-code elimination<br />
- global register allocation<br />
- global instruction scheduling and control speculation<br />
- loop unrolling<br />
- optimized code selection<br />
- partial redundancy elimination<br />
- strength reduction/induction variable simplification<br />
- variable renaming<br />
- exception handling optimizations<br />
- tail recursions<br />
- peephole optimizations<br />
- structure assignment lowering and optimizations<br />
- dead store elimination<br />
</p>
]]>
<include flag="f-O1"/>
</flag>
<flag name="f-O3" class="optimization" regexp="-O3(?=\s|$)">
<![CDATA[
<p>Enables O2 optimizations plus more aggressive optimizations,
such as prefetching, scalar replacement, and loop and memory
access transformations. Enables optimizations for maximum speed,
such as: </p>
<ul>
<li> Loop unrolling, including instruction scheduling </li>
<li> Code replication to eliminate branches</li>
<li> Padding the size of certain power-of-two arrays to allow
more efficient cache use.</li>
</ul> <br/>
<p>
On IA-32 and Intel EM64T processors, when O3 is used with options
-ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler
performs more aggressive data dependency analysis than for O2, which
may result in longer compilation times.
The O3 optimizations may not cause higher performance unless loop and
memory access transformations take place. The optimizations may slow
down code in some cases compared to O2 optimizations.
The O3 option is recommended for applications that have loops that heavily
use floating-point calculations and process large data sets. </p>
]]>
<include flag="f-O2"/>
</flag>
<flag name="f-funroll-loops" class="optimization" regexp="-funroll-loops\d+(?=\s|$)">
Tells the compiler the maximum number of times to unroll loops. For example -funroll-loops0 would
disable unrolling of loops.
</flag>
<flag name="f-fno-builtin" class="optimization" regexp="-fno-builtin(?=\s|$)">
-fno-builtin disables inline expansion for all intrinsic functions.
</flag>
<flag name="f-mno-ieee-fp" class="optimization" regexp="-f-mno-ieee-fp(?=\s|$)">
This option trades off floating-point precision for speed by removing
the restriction to conform to the IEEE standard.
</flag>
<flag name="f-fomit-framepointer" class="optimization" regexp="-fomit-framepointer(?=\s|$)">
EBP is used as a general-purpose register in optimizations.
</flag>
<flag name="f-ffunction-sections" class="optimization" regexp="-ffunction-sections(?=\s|$)">
Places each function in its own COMDAT section.
</flag>
<flag name="f-ftz" class="optimization" regexp="-ftz(?=\s|$)">
Flushes denormal results to zero.
</flag>
<flag name="f-opt-mem-layout-trans" class="optimization" regexp="-opt-mem-layout-trans=(\d+)(?=\s|$)">
<example>-opt-mem-trans=3</example>
<ex_replacement>3</ex_replacement>
<![CDATA[
<p> Controls the level of memory layout transformations performed by the compiler. This option can improve cache reuse and cache locality.</p>
<ul>
<li>0: Disables memory layout transformations. This is the same as specifying -no-opt-mem-layout-trans </li>
<li>1: Enables basic memory layout transformations like structure splitting, structure peeling, field inlining, field reordering, array field transpose, increase field alignment etc. </li>
<li>2: Enables more memory layout transformations like advanced structure splitting. This is the same as specifying -opt-mem-layout-trans </li>
<li>3: Compiler is more aggressive in using memory layout transformations. You should only use this setting if your system has more than 4GB of physical memory per core. </li>
</ul>
]]>
</flag>
<flag name="f-unroll" class="optimization" regexp="-unroll(\d+)(?=\s|$)">
<example>-unroll&lt;n&gt;</example>
This option sets the maximum number of times a loop can be unrolled, to $1.
<ex_replacement> n. For example, -unroll1 will unroll loops just once. To disable loop unrolling, use -unroll0. </ex_replacement>
</flag>
<flag name="f-par-schedule" class="optimization" regexp="-par-schedule-static\=(\d+)(?=\s|$)">
<![CDATA[
<p>The -par-schedule option lets you specify a scheduling algorithm or a tuning method for loop iterations.<br />
It specifies how iterations are to be divided among the threads of the team. This option affects performance <br />
tuning and can provide better performance during auto-parallelization.</p>
]]>
<example>-par-schedule-static=n</example>
<![CDATA[
-par-scheudle-static=n tells the compiler to divide iterations into contiguous pieces (chunks) of size n. <br />
The chunks are assigned to threads in the team in a round-robin fashion in the order of the thread number. <br />
Note that the last chunk to be assigned may have a smaller number of iterations. If n is not specified, <br />
the iteration space is divided into chunks that are approximately equal in size, and each thread is assigned at most one chunk.<br />
]]>
<ex_replacement> n. For example, -par-schedule-static=32768 will split iterations into chunks of size 32768. </ex_replacement>
</flag>
<flag name="f-ip" class="optimization" regexp="-ip(?=\s|$)">
This option enables additional interprocedural optimizations for single
file compilation. These optimizations are a subset of full intra-file
interprocedural optimizations. One of these optimizations enables the
compiler to perform inline function expansion for calls to functions
defined within the current source file.
</flag>
<flag name="f-ipo" class="optimization" regexp="-ipo(?=\s|$)">
<![CDATA[
<p>Multi-file ip optimizations that includes:<br />
- inline function expansion<br />
- interprocedural constant propogation<br />
- dead code elimination<br />
- propagation of function characteristics<br />
- passing arguments in registers<br />
- loop-invariant code motion</p>
]]>
</flag>
<flag name="f-auto-ilp32" class="optimization" regexp="-auto-ilp32(?=\s|$)">
<![CDATA[
<p>This option instructs the compiler to analyze and transform the program so that
64-bit pointers are shrunk to 32-bit pointers, and 64-bit longs (on Linux) are
shrunk into 32-bit longs wherever it is legal and safe to do so.
In order for this option to be effective the compiler must be able to optimize using
the -ipo/-Qipo option and must be able to analyze all library/external calls the program makes. </p>
<p>This option requires that the size of the program executable never exceeds 2^32 bytes and all
data values can be represented within 32 bits. If the program can run correctly in a 32-bit system,
these requirements are implicitly satisfied. If the program violates these size restrictions,
unpredictable behavior might occur.</p>
]]>
</flag>
<flag name="f-auto-p32" class="optimization" regexp="-auto-p32(?=\s|$)">
<![CDATA[
<p>This option instructs the compiler to analyze and transform the program so that
64-bit pointers are shrunk to 32-bit pointers wherever it is legal and safe to do so.
In order for this option to be effective, the compiler must optimize using
the -ipo option and must be able to analyze all library/external calls the program makes.
This option has no effect unless you specify setting SSE3 or higher for option -x. </p>
<p>This option requires that the application cannot exceed a 32-bit address space, otherwise
unpredictable results can occur.</p>
]]>
</flag>
<flag name="f-nofor_main" class="portability" regexp="-nofor_main(?=\s|$)">
<![CDATA[
<p>This option specifies that the main program is not written in Fortran.
It is a link-time option that prevents the compiler from linking for_main.o
into applications. </p>
<p>For example, if the main program is written in C and calls a Fortran subprogram,
specify -nofor-main when compiling the program with the ifort command.
If you omit this option, the main program must be a Fortran program.</p>
]]>
</flag>
<flag name="f-disablescalarrep" class="optimization" regexp="-scalar-rep-">
<example>Disable scalar replacement</example>
<![CDATA[
<p> -scalar-rep enables scalar replacement performed during loop transformation.
To use this option, you must also specify O3. -scalar-rep- disables this optimization. </p>
]]>
</flag>
<flag name="f-no-alias" class="optimization" regexp="-fno-alias(?=\s|$)">
<![CDATA[
<p> This options tells the compiler to assume no aliasing in the program. </p>
]]>
</flag>
<flag name="f-fast" class="optimization" regexp="-fast(?=\s|$)">
<![CDATA[
<p>The -fast option enhances execution speed across the entire program
by including the following options that can improve run-time performance:</p>
<p style="text-indent: -45px;margin-left: 45px">
-O3&nbsp;&nbsp;&nbsp;(maximum speed and high-level optimizations)</p>
<p style="text-indent: -45px;margin-left: 45px">
-ipo&nbsp;(enables interprocedural optimizations across files)</p>
<p style="text-indent: -45px;margin-left: 45px">
-xT&nbsp;&nbsp;(generate code specialized for Intel(R) Core(TM)2 Duo processors, Intel(R) Core(TM)2 Quad processors
and Intel(R) Xeon(R) processors with SSSE3)</p>
<p style="text-indent: -45px;margin-left: 45px">
-static&nbsp;
Statically link in libraries at link time</p>
<p style="text-indent: -45px;margin-left: 45px">
-no-prec-div&nbsp;(disable -prec-div)
where -prec-div improves precision of FP divides (some speed impact)</p>
<p>To override one of the options set by /fast, specify that option after the
-fast option on the command line. The exception is the xT or QxT option
which can't be overridden. The options set by /fast may change from
release to release.</p>
]]>
<include flag="f-O3"/>
<include flag="f-ipo"/>
<include flag="f-xT"/>
<include flag="f-static"/>
<include flag="f-no-prec-div"/>
</flag>
<flag name="f-static" class="optimization" regexp="-static(?=\s|$)">
Compiler option to statically link in libraries at link time
</flag>
<flag name="f-xT" class="optimization" regexp="-xT(?=\s|$)">
<![CDATA[
<p>Code is optimized for Intel(R) Core(TM)2 Duo processors, Intel(R) Core(TM)2 Quad
processors and Intel(R) Xeon(R) processors with SSSE3.
The resulting code may contain unconditional use of features that are not supported
on other processors. This option also enables new optimizations in addition to
Intel processor-specific optimizations including advanced data layout and code
restructuring optimizations to improve memory accesses for Intel processors.</p>
<p> Do not use this option if you are executing a program on a processor that
is not an Intel processor. If you use this option on a non-compatible processor
to compile the main program (in Fortran) or the function main() in C/C++, the
program will display a fatal run-time error if they are executed on unsupported
processors. </p>
]]>
</flag>
<flag name="f-xSSE3ATOM" class="optimization" regexp="-xSSE3_ATOM(?=\s|$)">
<![CDATA[
<p>Code is optimized for Intel(R) Atom processors with support for MOVBE instructions.
The resulting code may contain unconditional use of features that are not supported
on other processors. This option also enables new optimizations in addition to
Intel processor-specific optimizations including advanced data layout and code
restructuring optimizations to improve memory accesses for Intel processors.</p>
<p> Do not use this option if you are executing a program on a processor that
is not an Intel processor. If you use this option on a non-compatible processor
to compile the main program (in Fortran) or the function main() in C/C++, the
program will display a fatal run-time error if they are executed on unsupported
processors. </p>
]]>
</flag>
<flag name="f-xSSSE3ATOM" class="optimization" regexp="-xSSSE3_ATOM(?=\s|$)">
<![CDATA[
<p>Code is optimized for Intel(R) Atom processors with support for MOVBE instructions.
The resulting code may contain unconditional use of features that are not supported
on other processors. This option also enables new optimizations in addition to
Intel processor-specific optimizations including advanced data layout and code
restructuring optimizations to improve memory accesses for Intel processors.</p>
<p> Do not use this option if you are executing a program on a processor that
is not an Intel processor. If you use this option on a non-compatible processor
to compile the main program (in Fortran) or the function main() in C/C++, the
program will display a fatal run-time error if they are executed on unsupported
processors. </p>
]]>
</flag>
<flag name="f-xAVX2" class="optimization" regexp="-xCORE-AVX2(?=\s|$)">
<![CDATA[
<p>Code is optimized for Intel(R) processors with support for AVX2 instructions.
The resulting code may contain unconditional use of features that are not supported
on other processors. This option also enables new optimizations in addition to
Intel processor-specific optimizations including advanced data layout and code
restructuring optimizations to improve memory accesses for Intel processors.</p>
<p> Do not use this option if you are executing a program on a processor that
is not an Intel processor. If you use this option on a non-compatible processor
to compile the main program (in Fortran) or the function main() in C/C++, the
program will display a fatal run-time error if they are executed on unsupported
processors. </p>
]]>
</flag>
<flag name="f-xAVX" class="optimization" regexp="-xAVX(?=\s|$)">
<![CDATA[
<p>Code is optimized for Intel(R) processors with support for AVX instructions.
The resulting code may contain unconditional use of features that are not supported
on other processors. This option also enables new optimizations in addition to
Intel processor-specific optimizations including advanced data layout and code
restructuring optimizations to improve memory accesses for Intel processors.</p>
<p> Do not use this option if you are executing a program on a processor that
is not an Intel processor. If you use this option on a non-compatible processor
to compile the main program (in Fortran) or the function main() in C/C++, the
program will display a fatal run-time error if they are executed on unsupported
processors. </p>
]]>
</flag>
<flag name="f-xSSE42" class="optimization" regexp="-xSSE4.2(?=\s|$)">
<![CDATA[
<p>Code is optimized for Intel(R) processors with support for SSE 4.2 instructions.
The resulting code may contain unconditional use of features that are not supported
on other processors. This option also enables new optimizations in addition to
Intel processor-specific optimizations including advanced data layout and code
restructuring optimizations to improve memory accesses for Intel processors.</p>
<p> Do not use this option if you are executing a program on a processor that
is not an Intel processor. If you use this option on a non-compatible processor
to compile the main program (in Fortran) or the function main() in C/C++, the
program will display a fatal run-time error if they are executed on unsupported
processors. </p>
]]>
</flag>
<flag name="f-xSSE41" class="optimization" regexp="-xSSE4.1(?=\s|$)">
<![CDATA[
<p>Code is optimized for Intel(R) processors with support for SSE 4.1 instructions.
The resulting code may contain unconditional use of features that are not supported
on other processors. This option also enables new optimizations in addition to
Intel processor-specific optimizations including advanced data layout and code
restructuring optimizations to improve memory accesses for Intel processors.</p>
<p> Do not use this option if you are executing a program on a processor that
is not an Intel processor. If you use this option on a non-compatible processor
to compile the main program (in Fortran) or the function main() in C/C++, the
program will display a fatal run-time error if they are executed on unsupported
processors. </p>
]]>
</flag>
<flag name="f-msse3" class="optimization" regexp="-msse3(?=\s|$)">
<![CDATA[
<p>This option tells the compiler to generate code specialized for processors that support for SSE3 instructions.
Code generated with these options should execute on any compatible, non-Intel processor with support for the SSE3 instruction set.</p>
]]>
</flag>
<flag name="f-QxB" class="optimization" regexp="-QxB(?=\s|$)">
<![CDATA[
<p>Code is optimized for Intel Pentium M and compatible Intel processors. The
resulting code may contain unconditional use of features that are not supported
on other processors. This option also enables new optimizations in addition to
Intel processor-specific optimizations including advanced data layout and code
restructuring optimizations to improve memory accesses for Intel processors.</p>
<p> Do not use this option if you are executing a program on a processor that
is not an Intel processor. If you use this option on a non-compatible processor
to compile the main program (in Fortran) or the function main() in C/C++, the
program will display a fatal run-time error if they are executed on unsupported
processors. </p>
]]>
</flag>
<flag name="f-QxW" class="optimization" regexp="-QxW(?=\s|$)">
<![CDATA[
<p>Code is optimized for Intel Pentium 4 and compatible Intel processors;
this is the default for Intel?EM64T systems. The resulting code may contain
unconditional use of features that are not supported on other processors. </p>
]]>
</flag>
<flag name="f-parallel" class="optimization" regexp="-parallel(?=\s|$)" parallel="yes">
<![CDATA[
<p>Tells the auto-parallelizer to generate multithreaded code for loops that can be safely executed in parallel.
To use this option, you must also specify option O2 or O3. The default numbers of threads spawned is equal to
the number of processors detected in the system where the binary is compiled. Can be changed by setting the
environment variable OMP_NUM_THREADS </p>
]]>
</flag>
<flag name="f-libguide40.lib" class="optimization" regexp="libguide40.lib(?=\s|$)">
<example> Runtime library for auto-parallelized code</example>
<![CDATA[
<p>The use of -Qparallel to generate auto-parallelized code requires support libraries that are
dynamically linked by default. Specifying libguide40.lib on the link line, statically links in
libguide40.lib to allow auto-parallelized binaries to work on systems which do not have the
dynamic version of this library installed.</p>
]]>
</flag>
<flag name="f-archSSE2" class="optimization" regexp="-arch\:SSE2(?=\s|$)">
<![CDATA[
<p> Optimizes for Intel Pentium 4 and compatible processors with Streaming SIMD Extensions 2 (SSE2).</p>
]]>
</flag>
<flag name="f-no-prec-div" class="optimization" regexp="-no-prec.div">
(disable/enable[default] -prec-div)
<![CDATA[
<p>-no-prec-div enables optimizations that give slightly less precise results
than full IEEE division. </p>
<p>When you specify -no-prec-div along with some optimizations, such as
-xN and -xB (Linux) or /QxN and /QxB (Windows),
the compiler may change floating-point division computations into
multiplication by the reciprocal of the denominator.
For example, A/B is computed as A * (1/B) to improve the speed of the
computation.</p>
<p>However, sometimes the value produced by this transformation is
not as accurate as full IEEE division. When it is important to have fully
precise IEEE division, do not use -no-prec-div.
This will enable the default -prec-div and the result will be more accurate,
with some loss of performance.</p>
]]>
</flag>
<flag name="prof_gen" class="optimization" regexp="-prof-gen(?=\s|$)">
<![CDATA[
<p>Instrument program for profiling for the first phase of
two-phase profile guided otimization. This instrumentation gathers information
about a program's execution paths and data values but does not gather
information from hardware performance counters. The profile instrumentation
also gathers data for optimizations which are unique to profile-feedback
optimization.</p>
]]>
</flag>
<flag name="prof_use" class="optimization" regexp="-prof-use(?=\s|$)">
<![CDATA[
<p>Instructs the compiler to produce a profile-optimized
executable and merges available dynamic information (.dyn)
files into a pgopti.dpi file. If you perform multiple
executions of the instrumented program, -prof-use merges
the dynamic information files again and overwrites the
previous pgopti.dpi file.<br />
Without any other options, the current directory is
searched for .dyn files</p>
]]>
</flag>
<flag name="link_force_multiple1" class="optimization" regexp="-Wl\,-z\,muldefs(?=\s|$)">
<example> Force linker to ignore multiple definitions</example>
<![CDATA[
<p>Enable SmartHeap and/or other library usage by forcing the linker to
ignore multiple definitions if present</p>
]]>
</flag>
<flag name="SmartHeap64" class="optimization" regexp="-L\S+\s+-lsmartheap64(?=\s|$)">
<example>64-bit version of the Smartheap library</example>
<![CDATA[
<p>MicroQuill SmartHeap Library (64-bit) available from http://www.microquill.com/</p>
]]>
</flag>
<flag name="SmartHeap" class="optimization" regexp="-L\S+\s+-lsmartheap(?=\s|$)">
<example>32-bit version of the Smartheap library</example>
<![CDATA[
<p>MicroQuill SmartHeap Library (32-bit) available from http://www.microquill.com/</p>
]]>
</flag>
<flag name="Enable-64bit-compiler" class="optimization" regexp="-L/opt/intel/cce/[\d.]+/lib -I/opt/intel/cce/[\d.]+/include(?=\s|$)">
<example>Directory for 64-bit files</example>
<![CDATA[
<p>Enable the use of the 64-bit compiler by passing the directory names for the library and include files</p>
]]>
</flag>
<flag name="set_stack_space" class="optimization" regexp="(?:/\S+/)?/F\d*">
<example>Stack reserve amount</example>
set the stack reserve amount specified to the linker
</flag>
<flag name="f-ansi-alias" class="optimization" regexp="-ansi-alias(?=\s|$)">
Enable/disable(DEFAULT) use of ANSI aliasing rules in
optimizations; user asserts that the program adheres to
these rules.
</flag>
<flag name="f-opt-prefetch" class="optimization" regexp="-opt-prefetch(?=\s|$)">
Enable/disable(DEFAULT) the compiler to generate prefetch instructions to prefetch data.
</flag>
<flag name="f-inline-calloc" class="optimization" regexp="-inline-calloc(?=\s|$)">
Directs the compiler to inline calloc() calls as malloc()/memset()
</flag>
<flag name="f-opt-malloc-options" class="optimization" regexp="-opt-malloc-options=\d(?=\s|$)">
<![CDATA[
<p>The compiler adds setup code in the C/C++/Fortran main function to enable optimal malloc algorithms:</p>
<ul>
<li> n=0: Default, no changes to the malloc options. No call to mallopt() is made. </li>
<li> n=1: M_MMAP_MAX=2 and M_TRIM_THRESHOLD=0x10000000. Call mallopt with the two settings. </li>
<li> n=2: M_MMAP_MAX=2 and M_TRIM_THRESHOLD=0x40000000. Call mallopt with these two settings. </li>
<li> n=3: M_MMAP_MAX=0 and M_TRIM_THRESHOLD=-1. Call mallopt with these two settings. This
will cause use of sbrk() calls instead of mmap() calls to get memory from the system. </li>
</ul>
<p> The two parameters, M_MMAP_MAX and M_TRIM_THRESHOLD, are described below </p>
<p>Function: int mallopt (int param, int value) When calling mallopt, the param argument
specifies the parameter to be set, and value the new value to be set. Possible choices
for param, as defined in malloc.h, are: </p>
<ul>
<li> M_TRIM_THRESHOLD This is the minimum size (in bytes) of the top-most, releasable chunk
that will cause sbrk to be called with a negative argument in order to return memory
to the system. </li>
<li> M_TOP_PAD This parameter determines the amount of extra memory to obtain from the system
when a call to sbrk is required. It also specifies the number of bytes to retain when
shrinking the heap by calling sbrk with a negative argument. This provides the necessary
hysteresis in heap size such that excessive amounts of system calls can be avoided. </li>
<li> M_MMAP_THRESHOLD All chunks larger than this value are allocated outside the normal heap,
using the mmap system call. This way it is guaranteed that the memory for these chunks
can be returned to the system on free. Note that requests smaller than this threshold
might still be allocated via mmap. </li>
<li> M_MMAP_MAX The maximum number of chunks to allocate
with mmap. Setting this to zero disables all use of mmap. </li>
</ul>
]]>
</flag>
<flag name="f-vec-guard-write" class="optimization" regexp="-vec-guard-write(?=\s|$)">
Enables cache/bandwidth optimization for stores under conditionals (within vector loops)
This option tells the compiler to perform a conditional check in a vectorized loop.
This checking avoids unnecessary stores and may improve performance by conserving bandwidth.
</flag>
<flag name="f-par-runtime-control" class="optimization" regexp="-par-runtime-control(?=\s|$)" parallel="yes">
Enable compiler to generate runtime control code for effective automatic parallelization.
This option generates code to perform run-time checks for loops that have symbolic loop bounds.
If the granularity of a loop is greater than the parallelization threshold, the loop will be
executed in parallel. If you do not specify this option, the compiler may not parallelize loops
with symbolic loop bounds if the compile-time granularity estimation of a loop can not ensure
it is beneficial to parallelize the loop.
</flag>
<flag name="f-opt-ra-region-strategy" class="optimization" regexp="-opt-ra-region-strategy.*(?=\s|$)">
<![CDATA[
<p>Select the method that the register allocator uses to partition
each routine into regions</p>
<ul>
<li>routine - one region per routine</li>
<li>block - one region per block</li>
<li>trace - one region per trace</li>
<li>loop - one region per loop</li>
<li>default - compiler selects best option</li>
</ul>
]]>
</flag>
<flag name="f-opt-multi-version-aggressive" class="optimization" regexp="-opt-multi-version-aggressive(?=\s|$)">
Multi-versioning is used for generating different versions of the loop based on run time dependence testing,
alignment and checking for short/long trip counts. If this option is turned on, it will trigger more versioning
at the expense of creating more overhead to check for pointer aliasing and scalar replacement.
</flag>
<flag name="f-auto" class="optimization" regexp="-auto(?=\s|$)">
Make all local variables AUTOMATIC. Same as -automatic
</flag>
<flag name="f-unroll-aggressive" class="optimization" regexp="-unroll-aggressive(?=\s|$)">
Enables more aggressive unrolling heuristics
</flag>
<flag name="f-opt-streaming-stores" class="optimization" regexp="-opt-streaming-stores.*(?=\s|$)">
<![CDATA[
<p>Specifies whether streaming stores are generated:</p>
<p>always - enables generation of streaming stores under the assumption that the application is memory bound</p>
<p>auto - compiler decides when streaming stores are used (DEFAULT)</p>
<p>never - disables generation of streaming stores</p>
]]>
</flag>
<flag name="f-Oi-" class="optimization" regexp="-Oi-">
Disables inline expansion of all intrinsic functions.
</flag>
<flag name="f-Op-" class="optimization" regexp="-Op-(?=\s|$)">
<![CDATA[
<p>Disables conformance to the ANSI C and IEEE 754 standards for
floating-point arithmetic.</p>
]]>
</flag>
<flag name="f-Oy" class="optimization" regexp="-Oy(?=\s|$)">
Allows use of EBP as a general-purpose register in optimizations.
</flag>
<flag name="f-Os" class="optimization" regexp="-Os(?=\s|$)">
<![CDATA[
<p>This option enables most speed optimizations, but disables some
that increase code size for a small speed benefit.</p>
]]>
</flag>
<flag name="f-Og" class="optimization" regexp="-Og(?=\s|$)">
This option enables global optimizations.
</flag>
<flag name="f-inline-level" class="optimization" regexp="-inline-level=(0|1|2)(?=\s|$)">
<![CDATA[
<p>Specifies the level of inline function expansion.</p>
<p style="text-indent: -45px;margin-left: 45px">
0 - Disables inlining of user-defined functions. Note that
statement functions are always inlined.</p>
<p style="text-indent: -45px;margin-left: 45px">
1 - Enables inlining when an inline keyword or an inline
attribute is specified. Also enables inlining according
to the C++ language.</p>
<p style="text-indent: -45px;margin-left: 45px">
2 - Enables inlining of any function at the compiler's
discretion. </p>
]]>
</flag>
<flag name="f-Ob_n" class="optimization" regexp="-Ob(0|1|2)(?=\s|$)">
<![CDATA[
<p>Specifies the level of inline function expansion.</p>
<p style="text-indent: -45px;margin-left: 45px">
Ob0 - Disables inlining of user-defined functions. Note that
statement functions are always inlined.</p>
<p style="text-indent: -45px;margin-left: 45px">
Ob1 - Enables inlining when an inline keyword or an inline
attribute is specified. Also enables inlining according
to the C++ language.</p>
<p style="text-indent: -45px;margin-left: 45px">
Ob2 - Enables inlining of any function at the compiler's
discretion. </p>
]]>
</flag>
<flag name="f-Gy" class="optimization" regexp="-Gy(?=\s|$)">
<![CDATA[
<p>This option tells the compiler to separate functions into COMDATs
for the linker.</p>
]]>
</flag>
<flag name="f-GF" class="optimization" regexp="-GF(?=\s|$)">
This option enables read only string-pooling optimization.
</flag>
<flag name="f-Gf" class="optimization" regexp="-Gf(?=\s|$)">
This option enables read/write string-pooling optimization.
</flag>
<flag name="f-Gs" class="optimization" regexp="-Gs(?=\s|$)">
<![CDATA[
<p>This option disables stack-checking for routines with 4096 bytes
of local variables and compiler temporaries.</p>
]]>
</flag>
</flagsdescription>
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/zhangdaolong/speccpu2006-config-flags.git
[email protected]:zhangdaolong/speccpu2006-config-flags.git
zhangdaolong
speccpu2006-config-flags
speccpu2006-config-flags
master

搜索帮助