代码拉取完成,页面将自动刷新
<?xml version="1.0"?>
<!DOCTYPE flagsdescription SYSTEM "http://www.spec.org/dtd/cpuflags1.dtd">
<flagsdescription>
<!-- filename to begin with "Intel-ic11.0-win32-revB" -->
<filename>Intel-ic11.0-win32-revA.xml</filename>
<title>SPEC CPU2006 Flag Description for the Intel(R) C++ and Fortran Compiler Professional 11.0
for IA32 and Intel 64 applications </title>
<header>
<![CDATA[
<p style="text-align: left; color: red; font-size: larger; background-color: black">
Copyright © 2006 Intel Corporation. All Rights Reserved.</p>
]]>
</header>
<platform_settings>
<![CDATA[
<p><b>Platform settings</b></p>
<p>One or more of the following settings may have been set. If so, the "General Notes" section of the
report will say so; and you can read below to find out more about what these settings mean.</p>
<p><b>KMP_STACKSIZE </b></p>
<p>
Specify stack size to be allocated for each thread.
</p>
<p><b>KMP_AFFINITY </b></p>
<p>
KMP_AFFINITY = < physical | logical >, starting-core-id <br/>
specifies the static mapping of user threads to physical cores. For example,
if you have a system configured with 8 cores, OMP_NUM_THREADS=8 and
KMP_AFFINITY=physical,0 then thread 0 will mapped to core 0, thread 1 will be mapped to core 1, and
so on in a round-robin fashion.
</p>
<p><b>OMP_NUM_THREADS </b></p>
<p>
Sets the maximum number of threads to use for OpenMP* parallel regions if no
other value is specified in the application. This environment variable
applies to both -openmp and -parallel (Linux and Mac OS X) or /Qopenmp and /Qparallel (Windows).
Example syntax on a Linux system with 8 cores:
export OMP_NUM_THREADS=8
</p>
<p><b>Hardware Prefetch:</b></p>
<p>
This BIOS option allows the enabling/disabling of a processor mechanism to
prefetch data into the cache according to a pattern-recognition algorithm.
</p>
<p>
In some cases, setting this option to Disabled may improve
performance. Users should only disable this option
after performing application benchmarking to verify improved
performance in their environment.
</p>
<p><b>Adjacent Sector Prefetch:</b></p>
<p>
This BIOS option allows the enabling/disabling of a processor mechanism to
fetch the adjacent cache line within an 128-byte sector that contains
the data needed due to a cache line miss.
</p>
<p>
In some cases, setting this option to Disabled may improve
performance. Users should only disable this option
after performing application benchmarking to verify improved
performance in their environment.
</p>
<p><b>submit= specperl -e "system sprintf qq{start /b /wait /affinity %x %s}, (1<<$SPECCOPYNUM), qq{ $command } " </b></p>
<p>When running multiple copies of benchmarks, the SPEC config file feature
<b>submit</b> is used to cause individual jobs to be bound to
specific processors. This specific submit command is used for Windows.
The description of the elements of the command are:</p>
<ul>
<li><b>start /b /wait /affinity mask command </b>: <br/>
The start command is used to launch a new COMMAND with a given CPU
affinity. The CPU affinity is represented as a bitmask, with the
lowest order bit corresponding to the first logical CPU and highest
order bit corresponding to the last logical CPU. The process is only allowed to run
on a particular logical processor when the corresponding bit in the mask has been set to 1.
<br/>
</li>
<li><b>mask</b>: The bitmask (in hexadecimal) corresponding to a specific
SPECCOPYNUM. For example, the mask value for the first copy of a
rate run will be 0x00000001, for the second copy of the rate will
be 0x00000010 etc. Thus, the first copy of the rate run will have a
CPU affinity of CPU0, the second copy will have the affinity CPU1
etc.</li>
<li><b>command</b>: Program to be started, in this case, the benchmark instance
to be started.</li>
</ul>
]]>
</platform_settings>
<!--
******************************************************************************************************
* Compilers
******************************************************************************************************
-->
<flag name="intel_icc" class="compiler" regexp="icl -Qvc9(?=\s|$)">
<![CDATA[
<p>Invoke the Intel C/C++ compiler for IA32 applications in Visual Studio 2008 compatibility mode</p>
]]>
</flag>
<flag name="intel_ifort" class="compiler" regexp="(?:/\S+/)?ifort(?=\s|$)">
Invoke the Intel Fortran compiler for IA32 applications
</flag>
<flag name="intel_compiler_c99_mode" class="compiler" regexp="(?:/\S+/)?-Qc99(?=\s|$)">
Invoke the Intel C++ compiler in C99 mode
</flag>
<!--
******************************************************************************************************
* Portability
******************************************************************************************************
-->
<flag name="lowercase_routine_name" class="portability" regexp="(?:/\S+/)?-Qlowercase(?=\s|$)">
<![CDATA[
<p>For mixed-language benchmarks, tell the compiler to convert routine names to
lowercase for compatibility</p>
]]>
</flag>
<flag name="add-underscore_to_routine_name" class="portability" regexp="(?:/\S+/)?\/assume\:underscore(?=\s|$)">
<![CDATA[
<p>For mixed-language benchmarks, tell the compiler to assume that routine
names end with an underscore</p>
]]>
</flag>
<flag name="assume_cplusplus_sources" class="portability" regexp="(?:/\S+/)?-TP(?=\s|$)">
Tell the compiler to treat source files as C++ regardless of the file extension
</flag>
<!--
******************************************************************************************************
* Optimizations
******************************************************************************************************
-->
<flag name="f-O1" class="optimization" regexp="-O1(?=\s|$)">
<![CDATA[
<p>Enables optimizations for speed and disables some optimizations that <br />
increase code size and affect speed. <br />
To limit code size, this option: <br />
- Enables global optimization; this includes data-flow analysis,
code motion, strength reduction and test replacement, split-lifetime
analysis, and instruction scheduling. <br />
- Disables intrinsic recognition and intrinsics inlining. <br />
The O1 option may improve performance for applications with very large
code size, many branches, and execution time not dominated by code within loops. <br />
On IA-32 Windows platforms, -O1 sets the following:</p>
<p style="margin-left: 25px">
/Qunroll0, /Oi-, /Op-, /Oy, /Gy, /Os, /GF (/Qvc7 and above),
/Gf (/Qvc6 and below), /Ob2, and /Og</p>
]]>
<include flag="f-Qunroll"/>
<include flag="f-Oi-"/>
<include flag="f-Op-"/>
<include flag="f-Oy"/>
<include flag="f-Gy"/>
<include flag="f-Os"/>
<include flag="f-GF"/>
<include flag="f-Gf"/>
<include flag="f-Ob_n"/>
<include flag="f-Og"/>
</flag>
<flag name="f-O2" class="optimization" regexp="-O2(?=\s|$)">
<![CDATA[
<p>Enables optimizations for speed. This is the generally recommended
optimization level. This option also enables: <br />
- Inlining of intrinsics<br />
- Intra-file interprocedural optimizations, which include: <br />
- inlining<br />
- constant propagation<br />
- forward substitution<br />
- routine attribute propagation<br />
- variable address-taken analysis<br />
- dead static function elimination<br />
- removal of unreferenced variables<br />
- The following capabilities for performance gain: <br />
- constant propagation<br />
- copy propagation<br />
- dead-code elimination<br />
- global register allocation<br />
- global instruction scheduling and control speculation<br />
- loop unrolling<br />
- optimized code selection<br />
- partial redundancy elimination<br />
- strength reduction/induction variable simplification<br />
- variable renaming<br />
- exception handling optimizations<br />
- tail recursions<br />
- peephole optimizations<br />
- structure assignment lowering and optimizations<br />
- dead store elimination<br />
</p>
<p>On IA-32 Windows platforms, -O2 sets the following:</p>
<p style="margin-left: 25px">
/Og, /Oi-, /Os, /Oy, /Ob2, /GF (/Qvc7 and above), /Gf (/Qvc6
and below), /Gs, and /Gy.</p>
]]>
<include flag="f-Oi-"/>
<include flag="f-Gs"/>
<include flag="f-Oy"/>
<include flag="f-Gy"/>
<include flag="f-Os"/>
<include flag="f-GF"/>
<include flag="f-Gf"/>
<include flag="f-Ob_n"/>
<include flag="f-Og"/>
<include flag="f-O1"/>
</flag>
<flag name="f-O3" class="optimization" regexp="-O3(?=\s|$)">
<![CDATA[
<p>Enables O2 optimizations plus more aggressive optimizations,
such as prefetching, scalar replacement, and loop and memory
access transformations. Enables optimizations for maximum speed,
such as: <br />
- Loop unrolling, including instruction scheduling<br />
- Code replication to eliminate branches<br />
- Padding the size of certain power-of-two arrays to allow
more efficient cache use.<br />
On IA-32 and Intel EM64T processors, when O3 is used with options
-ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler
performs more aggressive data dependency analysis than for O2, which
may result in longer compilation times. <br />
The O3 optimizations may not cause higher performance unless loop and
memory access transformations take place. The optimizations may slow
down code in some cases compared to O2 optimizations. <br />
The O3 option is recommended for applications that have loops that heavily
use floating-point calculations and process large data sets. On IA-32
Windows platforms, -O3 sets the following:</p>
<p style="margin-left: 25px">
/GF (/Qvc7 and above), /Gf (/Qvc6 and below), and /Ob2</p>
]]>
<include flag="f-GF"/>
<include flag="f-Gf"/>
<include flag="f-Ob_n"/>
<include flag="f-O2"/>
</flag>
<flag name="f-Qunroll" class="optimization" regexp="-Qunroll(\d+)(?=\s|$)">
<example>-Qunroll<n></example>
This option sets the maximum number of times a loop can be unrolled, to $1.
<ex_replacement> n. For example, -unroll1 will unroll loops just once. To disable loop unrolling, use -unroll0. </ex_replacement>
</flag>
<flag name="f-Qip" class="optimization" regexp="-Qip(?=\s|$)">
This option enables additional interprocedural optimizations for single
file compilation. These optimizations are a subset of full intra-file
interprocedural optimizations. One of these optimizations enables the
compiler to perform inline function expansion for calls to functions
defined within the current source file.
</flag>
<flag name="f-Qipo" class="optimization" regexp="-Qipo(?=\s|$)">
<![CDATA[
<p>Multi-file ip optimizations that includes:<br />
- inline function expansion<br />
- interprocedural constant propogation<br />
- dead code elimination<br />
- propagation of function characteristics<br />
- passing arguments in registers<br />
- loop-invariant code motion</p>
]]>
</flag>
<flag name="f-fast" class="optimization" regexp="-fast(?=\s|$)">
<![CDATA[
<p>The -fast option enhances execution speed across the entire program
by including the following options that can improve run-time performance:</p>
<p style="text-indent: -45px;margin-left: 45px">
-O3 (maximum speed and high-level optimizations)</p>
<p style="text-indent: -45px;margin-left: 45px">
-Qipo (enables interprocedural optimizations across files)</p>
<p style="text-indent: -45px;margin-left: 45px">
-QxSSSE3 (generate code specialized for Intel(R) Core(TM)2 Duo processors, Intel(R) Core(TM)2 Quad processors
and Intel(R) Xeon(R) processors with SSSE3)</p>
<p style="text-indent: -45px;margin-left: 45px">
-Qprec-div- (disable -prec-div)
where -Qprec-div improves precision of FP divides (some speed impact)</p>
<p>To override one of the options set by /fast, specify that option after the
-fast option on the command line. The exception is the xT or QxT option
which can't be overridden. The options set by /fast may change from
release to release.</p>
]]>
<include flag="f-O3"/>
<include flag="f-Qipo"/>
<include flag="f-QxSSSE3"/>
<include flag="f-Qprec-div-"/>
</flag>
<flag name="f-static" class="compiler" regexp="-static(?=\s|$)">
Compiler option to statically link in libraries at link time
</flag>
<flag name="f-QxSSE42" class="optimization" regexp="-QxSSE4.2(?=\s|$)">
<![CDATA[
<p>Code is optimized for Intel(R) processors with support for SSE 4.2 instructions.
The resulting code may contain unconditional use of features that are not supported
on other processors. This option also enables new optimizations in addition to
Intel processor-specific optimizations including advanced data layout and code
restructuring optimizations to improve memory accesses for Intel processors.</p>
<p> Do not use this option if you are executing a program on a processor that
is not an Intel processor. If you use this option on a non-compatible processor
to compile the main program (in Fortran) or the function main() in C/C++, the
program will display a fatal run-time error if they are executed on unsupported
processors. </p>
]]>
</flag>
<flag name="f-QxSSE41" class="optimization" regexp="-QxSSE4.1(?=\s|$)">
<![CDATA[
<p>Code is optimized for Intel(R) processors with support for SSE 4.1 instructions.
The resulting code may contain unconditional use of features that are not supported
on other processors. This option also enables new optimizations in addition to
Intel processor-specific optimizations including advanced data layout and code
restructuring optimizations to improve memory accesses for Intel processors.</p>
<p> Do not use this option if you are executing a program on a processor that
is not an Intel processor. If you use this option on a non-compatible processor
to compile the main program (in Fortran) or the function main() in C/C++, the
program will display a fatal run-time error if they are executed on unsupported
processors. </p>
]]>
</flag>
<flag name="f-QxSSSE3" class="optimization" regexp="-QxSSSE3(?=\s|$)">
<![CDATA[
<p>Code is optimized for Intel(R) processors with support for Supplemental SSE 3 instructions.
The resulting code may contain unconditional use of features that are not supported
on other processors. This option also enables new optimizations in addition to
Intel processor-specific optimizations including advanced data layout and code
restructuring optimizations to improve memory accesses for Intel processors.</p>
<p> Do not use this option if you are executing a program on a processor that
is not an Intel processor. If you use this option on a non-compatible processor
to compile the main program (in Fortran) or the function main() in C/C++, the
program will display a fatal run-time error if they are executed on unsupported
processors. </p>
]]>
</flag>
<flag name="f-archSSE2" class="optimization" regexp="/arch:SSE2(?=\s|$)">
<![CDATA[
<p>Code is optimized for Intel Pentium 4 and compatible processors
that supporting Streaming SIMD Extensions 2; this is the default for Intel EM64T systems.
The resulting code may contain unconditional use of features that are not supported on
other processors. </p>
]]>
</flag>
<flag name="f-Qparallel" class="optimization" regexp="-Qparallel\b" parallel="yes">
<![CDATA[
<p>Tells the auto-parallelizer to generate multithreaded code for loops that can be safely executed in parallel.
To use this option, you must also specify option O2 or O3. The default numbers of threads spawned is equal to
the number of processors detected in the system where the binary is compiled. Can be changed by setting the
environment variable OMP_NUM_THREADS </p>
]]>
</flag>
<flag name="f-Qscalar-rep" class="optimization" regexp="-Qscalar-rep.">
<![CDATA[
<p> This option enables scalar replacement performed during loop transformation. To use this option, you must also specify O3.
-Qscalar-rep- disables this optimization.
</p>
]]>
</flag>
<flag name="f-Oa" class="optimization" regexp="-Oa(?=\s|$)">
<![CDATA[
<p>Tells the compiler to assume there is no aliasing.</p>
]]>
</flag>
<flag name="f-Qprec-div-" class="optimization" regexp="-Qprec-div-">
(disable/enable[default] -prec-div)
<![CDATA[
<p>-Qprec-div- enables optimizations that give slightly less precise results
than full IEEE division. </p>
<p>When you specify -Qprec-div- along with some optimizations, such as
/QxT, the compiler may change floating-point division computations into
multiplication by the reciprocal of the denominator.
For example, A/B is computed as A * (1/B) to improve the speed of the
computation.</p>
<p>However, sometimes the value produced by this transformation is
not as accurate as full IEEE division. When it is important to have fully
precise IEEE division, do not use -Qprec-div- which will enable the
default -Qprec-div and the result is more accurate, with some loss of
performance.</p>
]]>
</flag>
<flag name="Qprof_gen" class="optimization" regexp="-Qprof_gen(?=\s|$)">
<![CDATA[
<p>Instrument program for profiling for the first phase of
two-phase profile guided otimization. This instrumentation gathers information
about a program's execution paths and data values but does not gather
information from hardware performance counters. The profile instrumentation
also gathers data for optimizations which are unique to profile-feedback
optimization.</p>
]]>
</flag>
<flag name="Qprof_use" class="optimization" regexp="-Qprof_use(?=\s|$)">
<![CDATA[
<p>Instructs the compiler to produce a profile-optimized
executable and merges available dynamic information (.dyn)
files into a pgopti.dpi file. If you perform multiple
executions of the instrumented program, -prof-use merges
the dynamic information files again and overwrites the
previous pgopti.dpi file.<br />
Without any other options, the current directory is
searched for .dyn files</p>
]]>
</flag>
<flag name="link_force_multiple1" class="optimization" regexp="\b\-Fe\$\@\-link(?=\s|$)">
<![CDATA[
<p>Enable SmartHeap and/or other library usage by forcing the linker to
ignore multiple definitions if present</p>
]]>
</flag>
<flag name="link_force_multiple2" class="optimization" regexp=".*FORCE.*MULTIPLE(?=\s|$)">
<![CDATA[
<p>Enable SmartHeap library usage by forcing the linker to
ignore multiple definitions</p>
]]>
</flag>
<flag name="SmartHeap" class="optimization" regexp="shlw32m.lib(?=\s|$)">
<![CDATA[
<p>MicroQuill SmartHeap Library available from http://www.microquill.com/</p>
]]>
</flag>
<flag name="f-no_wchar_t_keyword" class="portability" regexp="-Qoption,cpp,--no_wchar_t_keyword(?=\s|$)">
<![CDATA[
<p>-Qoption,<i>string</i>,<i>options</i> This option
passes options to a specified tool.
</p>
<p><i>string</i> Is the name of the tool.<br/>
Here: cpp indicates the C++ preprocessor.
</p>
<p><i>options</i> Are one or more comma-separated,
valid options for the designated tool.<br/>
Here: --no_wchar_t_keyword is passed to C++ preprocessor to provide
the information that there is no wchar_t keyword.
</p>
<p>This flag must be used with Microsoft Visual Studio 2005.<br/>
It avoids syntax errors coming from the use of wchar_t in 483.xalancbmk.
</p>
]]>
</flag>
<flag name="f-Qcxx_features" class="optimization" regexp="-Qcxx-features(?=\s|$)">
<![CDATA[
<p>Enable C++ Exception Handling and RTTI<br />
This option has the same effect as specifying /GX /GR.</p>
]]>
<include flag="f-GX"/>
<include flag="f-GR"/>
</flag>
<flag name="f-GX" class="optimization" regexp="-GX(?=\s|$)">
This option enables C++ exception handling.
</flag>
<flag name="f-GR" class="optimization" regexp="-GR(?=\s|$)">
Enables C++ Run Time Type Information (RTTI).
</flag>
<flag name="set_stack_space" class="optimization" regexp="(?:/\S+/)?/F\d*">
set the stack reserve amount specified to the linker
</flag>
<flag name="f-Qansi-alias" class="optimization" regexp="-Qansi-alias(?=\s|$)">
Enable/disable(DEFAULT) use of ANSI aliasing rules in
optimizations; user asserts that the program adheres to
these rules.
</flag>
<flag name="f-Qprefetch" class="optimization" regexp="-Qopt-prefetch(?=\s|$)">
This option enables or disables prefetch insertion optimization. The goal of prefetching
is to reduce cache misses by providing hints to the processor about when data should be
loaded into the cache.
</flag>
<flag name="f-Qinline-calloc" class="optimization" regexp="-Qinline-calloc(?=\s|$)">
Directs the compiler to inline calloc() calls as malloc()/memset()
</flag>
<flag name="f-Qopt-streaming-stores-always" class="optimization" regexp="-Qopt-streaming-stores.always(?=\s|$)">
<![CDATA[
This option enables generation of streaming stores for optimization. This method stores data with
instructions that use a non-temporal buffer, which minimizes memory hierarchy pollution:
<ul>
<li>always - enables generation of streaming stores under the assumption that the application is memory bound</li>
<li>auto - compiler decides when streaming stores are used (DEFAULT)</li>
<li>never - disables generation of streaming stores</li>
</ul>
]]>
</flag>
<flag name="f-Qvec-guard-write" class="optimization" regexp="-Qvec-guard-write(?=\s|$)">
Enables cache/bandwidth optimization for stores under conditionals (within vector loops)
This option tells the compiler to perform a conditional check in a vectorized loop.
This checking avoids unnecessary stores and may improve performance by conserving bandwidth.
</flag>
<flag name="f-Qpar-runtime-control" class="optimization" regexp="-Qpar-runtime-control(?=\s|$)">
Enable compiler to generate runtime control code for effective automatic parallelization.
This option generates code to perform run-time checks for loops that have symbolic loop bounds.
If the granularity of a loop is greater than the parallelization threshold, the loop will be
executed in parallel. If you do not specify this option, the compiler may not parallelize loops
with symbolic loop bounds if the compile-time granularity estimation of a loop can not ensure
it is beneficial to parallelize the loop.
</flag>
<flag name="f-Qopt-ra-region-strategy-block" class="optimization" regexp="-Qopt-ra-region-strategy.block(?=\s|$)">
<![CDATA[
<p>Select the method that the register allocator uses to partition
each routine into regions</p>
<ul>
<li>routine - one region per routine</li>
<li>block - one region per block</li>
<li>trace - one region per trace</li>
<li>loop - one region per loop</li>
<li>default - compiler selects best option</li>
</ul>
]]>
</flag>
<flag name="f-Qopt-ra-region-strategy-routine" class="optimization" regexp="-Qopt-ra-region-strategy.routine(?=\s|$)">
<![CDATA[
<p>Select the method that the register allocator uses to partition
each routine into regions</p>
<ul>
<li>routine - one region per routine</li>
<li>block - one region per block</li>
<li>trace - one region per trace</li>
<li>loop - one region per loop</li>
<li>default - compiler selects best option</li>
</ul>
]]>
</flag>
<flag name="f-Qopt-multi-version-aggressive" class="optimization" regexp="-Qopt-multi-version-aggressive(?=\s|$)">
Multi-versioning is used for generating different versions of the loop based on run time dependence testing,
alignment and checking for short/long trip counts. If this option is turned on, it will trigger more versioning
at the expense of creating more overhead to check for pointer aliasing and scalar replacement.
</flag>
<flag name="f-Qunroll-aggressive" class="optimization" regexp="-Qunroll-aggressive(?=\s|$)">
Enables more aggressive unrolling heuristics
</flag>
<flag name="f-Qauto" class="optimization" regexp="-Qauto">
<![CDATA[
<p>This option places local variables, except those declared as SAVE, to the run-time stack.
It is as if the variables were declared with the AUTOMATIC attribute. </p>
<p> It does not affect variables that have the SAVE attribute or ALLOCATABLE attribute,
or variables that appear in an EQUIVALENCE statement or in a common block. </p>
<p>This option may provide a performance gain for your program, but if your program depends on
variables having the same value as the last time the routine was invoked, your program may not
function properly. </p>
<p> If you want to cause variables to be placed in static memory, specify /Qsave (Windows). </p>
]]>
</flag>
<flag name="f-Oi-" class="optimization" regexp="-Oi-">
Disables inline expansion of all intrinsic functions.
</flag>
<flag name="f-Op-" class="optimization" regexp="-Op-(?=\s|$)">
<![CDATA[
<p>Disables conformance to the ANSI C and IEEE 754 standards for
floating-point arithmetic.</p>
]]>
</flag>
<flag name="f-Oy" class="optimization" regexp="-Oy(?=\s|$)">
Allows use of EBP as a general-purpose register in optimizations.
</flag>
<flag name="f-Os" class="optimization" regexp="-Os(?=\s|$)">
<![CDATA[
<p>This option enables most speed optimizations, but disables some
that increase code size for a small speed benefit.</p>
]]>
</flag>
<flag name="f-Og" class="optimization" regexp="-Og(?=\s|$)">
This option enables global optimizations.
</flag>
<flag name="f-Ob_n" class="optimization" regexp="-Ob(0|1|2)(?=\s|$)">
<![CDATA[
<p>Specifies the level of inline function expansion.</p>
<p style="text-indent: -45px;margin-left: 45px">
Ob0 - Disables inlining of user-defined functions. Note that
statement functions are always inlined.</p>
<p style="text-indent: -45px;margin-left: 45px">
Ob1 - Enables inlining when an inline keyword or an inline
attribute is specified. Also enables inlining according
to the C++ language.</p>
<p style="text-indent: -45px;margin-left: 45px">
Ob2 - Enables inlining of any function at the compiler's
discretion. </p>
]]>
</flag>
<flag name="f-Gy" class="optimization" regexp="-Gy(?=\s|$)">
<![CDATA[
<p>This option tells the compiler to separate functions into COMDATs
for the linker.</p>
]]>
</flag>
<flag name="f-GF" class="optimization" regexp="-GF(?=\s|$)">
This option enables read only string-pooling optimization.
</flag>
<flag name="f-Gf" class="optimization" regexp="-Gf(?=\s|$)">
This option enables read/write string-pooling optimization.
</flag>
<flag name="f-Gs" class="optimization" regexp="-Gs(?=\s|$)">
<![CDATA[
<p>This option disables stack-checking for routines with 4096 bytes
of local variables and compiler temporaries.</p>
]]>
</flag>
</flagsdescription>
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。