代码拉取完成,页面将自动刷新
<?xml version="1.0"?>
<!DOCTYPE flagsdescription SYSTEM "http://www.spec.org/dtd/cpuflags1.dtd">
<flagsdescription>
<!-- filename to begin with "Intel-ic10-flags-file" -->
<filename>HP-Intel-ic10.1-linux-fp-flags</filename>
<title>SPEC CPU2006 Flag Description for the Intel(R) C++ Compiler 10.1
for IA32 and Intel 64 applications and Intel(R) Fortran Compiler 10.1 for IA32 and Intel 64
applications</title>
<header>
<![CDATA[
<p style="text-align: left; color: red; font-size: larger; background-color: black">
Copyright © 2006 Intel Corporation. All Rights Reserved.</p>
]]>
</header>
<!--
*********************************************************************************************************************
Explanations of platform info, such as BIOS settings
*********************************************************************************************************************
-->
<platform_settings>
<![CDATA[
<p><b>Platform settings</b></p>
<p>One or more of the following settings may have been set. If so, the "Platform Notes" section of the
report will say so; and you can read below to find out more about what these settings mean.</p>
<p><b>Power Regulator for ProLiant support (Default=HP Dynamic Power Savings Mode)</b></p>
<p>Values for this BIOS setting can be:</p>
<ul>
<li><b>HP Dynamic Power Savings Mode</b>: Automatically varies processor
speed and power usage based on processor utilization. Allows
reducing overall power consumption with little or no impact to
performance. Does not require OS support. </li>
<li><b>HP Static Low Power Mode</b>: Reduces processor speed and power usage.
Guarantees a lower maximum power usage for the system. Performance
impacts will be greater for environments with higher processor
utilization. </li>
<li><b>HP Static High Performance Mode</b>: Processors will run in their
maximum power/performance state at all times regardless of the
OS power managment policy. </li>
<li><b>OS Control Mode</b>: Processors will run in their maximum power/
performance state at all times unless the OS enables' a power
management policy. </li>
</ul>
<p><b>Adjacent Sector Prefetch (Default = Enabled):</b></p>
<p>
This BIOS option allows the enabling/disabling of a processor mechanism to
fetch the adjacent cache line within an 128-byte sector that contains
the data needed due to a cache line miss. </p>
<p>
In some limited cases, setting this option to Disabled may improve
performance. In the majority of cases, the default value of Enabled
provides better performance. Users should only disable this option
after performing application benchmarking to verify improved
performance in their environment.</p>
<p><b>Hardware Prefetch (Default = Enabled):</b></p>
<p>
This BIOS option allows allows the enabling/disabling of a processor
mechanism to prefetch data into the cache according to a pattern
recognition algorithm.</p>
<p>
In some limited cases, setting this option to Disabled may improve
performance. In the majority of cases, the default value of Enabled
provides better performance. Users should only disable this option
after performing application benchmarking to verify improved
performance in their environment.</p>
<p><b> submit= MYMASK=`printf '0x%x' \$((1<<\$SPECCOPYNUM))`; /usr/bin/taskset \$MYMASK $command </b></p>
<p>
When running multiple copies of benchmarks, the SPEC config file feature
<b>submit</b> is sometimes used to cause individual jobs to be bound to
specific processors. This specific submit command is used for Linux.
The description of the elements of the command are:
<ul>
<li> <b>/usr/bin/taskset [options] [mask] [pid | command [arg] ... ]</b>: <br />
taskset is used to set or retreive the CPU affinity of a running
process given its PID or to launch a new COMMAND with a given CPU
affinity. The CPU affinity is represented as a bitmask, with the
lowest order bit corresponding to the first logical CPU and highest
order bit corresponding to the last logical CPU. When the taskset
returns, it is guaranteed that the given program has been scheduled
to a legal CPU. <br /><br />
The default behaviour of taskset is to run a new command with a
given affinity mask: <br /><br />
taskset [mask] [command] [arguments] </li>
<li> <b>$MYMASK</b>: The bitmask (in hexadecimal) corresponding to a specific
SPECCOPYNUM. For example, $MYMASK value for the first copy of a
rate run will be 0x00000001, for the second copy of the rate will
be 0x00000002 etc. Thus, the first copy of the rate run will have a
CPU affinity of CPU0, the second copy will have the affinity CPU1
etc.</li>
<li> <b>$command</b>: Program to be started, in this case, the benchmark instance
to be started. </li>
</ul>
</p>
<p><b> ulimit -s <n> (Linux) </b></p>
<p>
Sets the stack size to <b>n</b> kbytes, or <b>unlimited</b> to allow the stack size
to grow without limit. </p>
<p><b> KMP_STACKSIZE=<integer> (Linux) </b></p>
<p>
Sets the number of bytes to allocate for each parallel thread to use as its
private stack. Use the optional suffix B, K, M, G, or T, to specify bytes,
kilobytes, megabytes, gigabytes, or terabytes. The default setting is 2M on
IA32 and 4M on IA64. </p>
<p><b> KMP_AFFINITY=physical,n (Linux) </b></p>
<p>
Assigns threads to consecutive physical processors (for example, cores),
beginning at processor n. Specifies the static mapping of user threads to
physical cores, beginning at processor n. For example, if a system is configured
with 8 cores, and OMP_NUM_THREADS=8 and KMP_AFFINITY=physical,2 are set, then
thread 0 will mapped to core 2, thread 1 will be mapped to core 3, and so on in
a round-robin fashion. </p>
<p><b> vm.max_map_count-n (Linux) </b></p>
<p>
The maximum number of memory map areas a process may have. Memory map areas
are used as a side-effect of calling malloc, directly by mmap and mprotect,
and also when loading shared libraries. </p>
]]>
</platform_settings>
<!--
******************************************************************************************************
* Compilers
******************************************************************************************************
-->
<flag name="intel_icc_64bit" class="compiler" regexp="\/home\/.*\/Linux64\/.*icc\b">
<![CDATA[
<p>Invoke the Intel C/C++ compiler for Intel 64 applications </p>
]]>
</flag>
<flag name="intel_icc_32bit" class="compiler" regexp="\/home\/.*\/Linux32\/.*icc\b">
<![CDATA[
<p>Invoke the Intel C/C++ compiler for 32-bit applications </p>
]]>
</flag>
<flag name="intel_icc" class="compiler" regexp="icc\b">
<![CDATA[
<p> Invoke the Intel C compiler 10.1 for Intel 64 applications.</p>
<p> You need binutils 2.16.91.0.7 or later with this compiler to support new instructions on Intel Core 2 processors </p>
]]>
</flag>
<flag name="intel_icpc" class="compiler" regexp="(?:/\S+/)?icpc\b">
<![CDATA[
<p> Invoke the Intel C++ compiler for Intel 64 applications.</p>
<p> You need binutils 2.16.91.0.7 or later with this compiler to support new instructions on Intel Core 2 processors </p>
]]>
</flag>
<flag name="intel_ifort" class="compiler" regexp="(?:/\S+/)?ifort\b">
<![CDATA[
<p> Invoke the Intel Fortran compiler for IA32 and Intel 64 applications.</p>
<p> You need binutils 2.16.91.0.7 or later with this compiler to support new instructions on Intel Core 2 processors </p>
]]>
</flag>
<flag name="intel64_c_compiler_include_path" class="compiler" regexp="(?:/\S+/)?-I\/home\/.*\/Linux64\/include">
Compiler option to set the path for include files.
Used in some integer peak benchmarks which were built using the Intel 64-bit C++ compiler.
</flag>
<flag name="intel64_c_compiler_library_path" class="compiler" regexp="(?:/\S+/)?-L\/home\/.*\/Linux64\/lib">
Compiler option to set the path for library files.
Used in some integer peak benchmarks which were built using the Intel 64-bit C++ compiler.
</flag>
<flag name="ia32_c_compiler_include_path" class="compiler" regexp="(?:/\S+/)?-I\/home\/.*\/Linux32\/include">
Compiler option to set the path for include files.
Used in some peak benchmarks which were built using the Intel 32-bit C++ compiler.
</flag>
<flag name="ia32_c_compiler_library_path" class="compiler" regexp="(?:/\S+/)?-L\/home\/.*\/Linux32\/lib">
Compiler option to set the path for library files.
Used in some integer peak benchmarks which were built using the Intel 32-bit C++ compiler.
</flag>
<flag name="ia32_f_compiler_include_path" class="compiler" regexp="(?:/\S+/)?-I\/home\/.*\/Linux32\/include">
Compiler option to set the path for include files.
Used in some peak benchmarks which were built using the Intel 32-bit Fortran compiler.
</flag>
<flag name="ia32_f_compiler_library_path" class="compiler" regexp="(?:/\S+/)?-L\/home\/.*\/Linux32\/lib">
Compiler option to set the path for library files.
Used in some integer peak benchmarks which were built using the Intel 32-bit Fortran compiler.
</flag>
<!--
******************************************************************************************************
* Portability
******************************************************************************************************
-->
<flag name="lowercase_routine_name" class="portability" regexp="(?:/\S+/)?-Qlowercase\b">
<![CDATA[
<p>For mixed-language benchmarks, tell the compiler to convert routine names to
lowercase for compatibility</p>
]]>
</flag>
<flag name="add-underscore_to_routine_name" class="portability" regexp="(?:/\S+/)?\/assume\:underscore\b">
<![CDATA[
<p>For mixed-language benchmarks, tell the compiler to assume that routine
names end with an underscore</p>
]]>
</flag>
<flag name="assume_cplusplus_sources" class="portability" regexp="(?:/\S+/)?-TP\b">
Tell the compiler to treat source files as C++ regardless of the file extension
</flag>
<!--
******************************************************************************************************
* Optimizations
******************************************************************************************************
-->
<flag name="f-O1" class="optimization" regexp="-O1\b">
<![CDATA[
<p>Enables optimizations for speed and disables some optimizations that <br />
increase code size and affect speed. <br />
To limit code size, this option: <br />
- Enables global optimization; this includes data-flow analysis,
code motion, strength reduction and test replacement, split-lifetime
analysis, and instruction scheduling. <br />
- Disables intrinsic recognition and intrinsics inlining. <br />
The O1 option may improve performance for applications with very large
code size, many branches, and execution time not dominated by code within loops. <br />
On IA-32 Windows platforms, -O1 sets the following:</p>
<p style="margin-left: 25px">
/Qunroll0, /Oi-, /Op-, /Oy, /Gy, /Os, /GF (/Qvc7 and above),
/Gf (/Qvc6 and below), /Ob2, and /Og</p>
]]>
<include flag="f-unroll_n"/>
<include flag="f-Oi-"/>
<include flag="f-Op-"/>
<include flag="f-Oy"/>
<include flag="f-Gy"/>
<include flag="f-Os"/>
<include flag="f-GF"/>
<include flag="f-Gf"/>
<include flag="f-Ob_n"/>
<include flag="f-Og"/>
</flag>
<flag name="f-O2" class="optimization" regexp="-O2\b">
<![CDATA[
<p>Enables optimizations for speed. This is the generally recommended
optimization level. This option also enables: <br />
- Inlining of intrinsics<br />
- Intra-file interprocedural optimizations, which include: <br />
- inlining<br />
- constant propagation<br />
- forward substitution<br />
- routine attribute propagation<br />
- variable address-taken analysis<br />
- dead static function elimination<br />
- removal of unreferenced variables<br />
- The following capabilities for performance gain: <br />
- constant propagation<br />
- copy propagation<br />
- dead-code elimination<br />
- global register allocation<br />
- global instruction scheduling and control speculation<br />
- loop unrolling<br />
- optimized code selection<br />
- partial redundancy elimination<br />
- strength reduction/induction variable simplification<br />
- variable renaming<br />
- exception handling optimizations<br />
- tail recursions<br />
- peephole optimizations<br />
- structure assignment lowering and optimizations<br />
- dead store elimination<br />
</p>
<p>On IA-32 Windows platforms, -O2 sets the following:</p>
<p style="margin-left: 25px">
/Og, /Oi-, /Os, /Oy, /Ob2, /GF (/Qvc7 and above), /Gf (/Qvc6
and below), /Gs, and /Gy.</p>
]]>
<include flag="f-Oi-"/>
<include flag="f-Gs"/>
<include flag="f-Oy"/>
<include flag="f-Gy"/>
<include flag="f-Os"/>
<include flag="f-GF"/>
<include flag="f-Gf"/>
<include flag="f-Ob_n"/>
<include flag="f-Og"/>
<include flag="f-O1"/>
</flag>
<flag name="f-O3" class="optimization" regexp="-O3\b">
<![CDATA[
<p>Enables O2 optimizations plus more aggressive optimizations,
such as prefetching, scalar replacement, and loop and memory
access transformations. Enables optimizations for maximum speed,
such as: <br />
- Loop unrolling, including instruction scheduling<br />
- Code replication to eliminate branches<br />
- Padding the size of certain power-of-two arrays to allow
more efficient cache use.<br />
On IA-32 and Intel EM64T processors, when O3 is used with options
-ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler
performs more aggressive data dependency analysis than for O2, which
may result in longer compilation times. <br />
The O3 optimizations may not cause higher performance unless loop and
memory access transformations take place. The optimizations may slow
down code in some cases compared to O2 optimizations. <br />
The O3 option is recommended for applications that have loops that heavily
use floating-point calculations and process large data sets. On IA-32
Windows platforms, -O3 sets the following:</p>
<p style="margin-left: 25px">
/GF (/Qvc7 and above), /Gf (/Qvc6 and below), and /Ob2</p>
]]>
<include flag="f-GF"/>
<include flag="f-Gf"/>
<include flag="f-Ob_n"/>
<include flag="f-O2"/>
</flag>
<flag name="f-unroll_n" class="optimization" regexp="-unroll(\d+)\b">
Tells the compiler the maximum number of times to unroll loops, in this case $1 times.
</flag>
<flag name="f-ip" class="optimization" regexp="-ip\b">
This option enables additional interprocedural optimizations for single
file compilation. These optimizations are a subset of full intra-file
interprocedural optimizations. One of these optimizations enables the
compiler to perform inline function expansion for calls to functions
defined within the current source file.
</flag>
<flag name="f-ipo" class="optimization" regexp="-ipo\b">
<![CDATA[
<p>Multi-file ip optimizations that includes:<br />
- inline function expansion<br />
- interprocedural constant propogation<br />
- dead code elimination<br />
- propagation of function characteristics<br />
- passing arguments in registers<br />
- loop-invariant code motion</p>
]]>
</flag>
<flag name="f-auto-ilp32" class="optimization" regexp="-auto-ilp32\b">
<![CDATA[
<p>This option instructs the compiler to analyze and transform the program so that
64-bit pointers are shrunk to 32-bit pointers, and 64-bit longs (on Linux) are
shrunk into 32-bit longs wherever it is legal and safe to do so.
In order for this option to be effective the compiler must be able to optimize using
the -ipo/-Qipo option and must be able to analyze all library/external calls the program makes. </p>
<p>This option requires that the application not exceed a 32-bit address space. If the program can run correctly in a 32-bit system,
these requirements are implicitly satisfied. If the program violates these size restrictions,
unpredictable behavior might occur.</p>
]]>
</flag>
<flag name="f-noformain" class="portability" regexp="-nofor_main\b">
<![CDATA[
<p>This option specifies that the main program is not written in Fortran.
It is a link-time option that prevents the compiler from linking for_main.o
into applications. </p>
<p>For example, if the main program is written in C and calls a Fortran subprogram,
specify -nofor-main when compiling the program with the ifort command.
If you omit this option, the main program must be a Fortran program.</p>
]]>
</flag>
<flag name="f-disablescalarrep" class="optimization" regexp="-scalar-rep-">
<![CDATA[
<p> -scalar-rep enables scalar replacement performed during loop transformation.
To use this option, you must also specify O3. -scalar-rep- disables this optimization. </p>
]]>
</flag>
<flag name="f-no-alias" class="optimization" regexp="-fno-alias\b">
<![CDATA[
<p> This options tells the compiler to assume no aliasing in the program. </p>
]]>
</flag>
<flag name="f-fast" class="optimization" regexp="-fast\b">
<![CDATA[
<p>The -fast option enhances execution speed across the entire program
by including the following options that can improve run-time performance:</p>
<p style="text-indent: -45px;margin-left: 45px">
-O3 (maximum speed and high-level optimizations)</p>
<p style="text-indent: -45px;margin-left: 45px">
-ipo (enables interprocedural optimizations across files)</p>
<p style="text-indent: -45px;margin-left: 45px">
-xT (generate code specialized for Intel(R) Core(TM)2 Duo processors, Intel(R) Core(TM)2 Quad processors
and Intel(R) Xeon(R) processors with SSE3)</p>
<p style="text-indent: -45px;margin-left: 45px">
-static (Statically link in libraries at link time)</p>
<p style="text-indent: -45px;margin-left: 45px">
-no-prec-div (Disables -prec-div (default), where -prec-div improves the
precision of FP divides. -prec-div causes some speed impact)</p>
<p>To override one of the options set by /fast, specify that option after the
-fast option on the command line. The exception is the xT or QxT option
which can't be overridden. The options set by /fast may change from
release to release.</p>
]]>
<include flag="f-O3"/>
<include flag="f-ipo"/>
<include flag="f-xT"/>
<include flag="f-static"/>
<include flag="f-no-prec-div"/>
</flag>
<flag name="f-static" class="compiler" regexp="-static\b">
Compiler option to statically link in libraries at link time
</flag>
<flag name="f-xT" class="optimization" regexp="-xT\b">
<![CDATA[
<p>Code is optimized for Intel(R) Core(TM)2 Duo processors, Intel(R) Core(TM)2 Quad
processors and Intel(R) Xeon(R) processors with SSE3.
The resulting code may contain unconditional use of features that are not supported
on other processors. This option also enables new optimizations in addition to
Intel processor-specific optimizations including advanced data layout and code
restructuring optimizations to improve memory accesses for Intel processors.</p>
<p> Do not use this option if you are executing a program on a processor that
is not an Intel processor. If you use this option on a non-compatible processor
to compile the main program (in Fortran) or the function main() in C/C++, the
program will display a fatal run-time error if they are executed on unsupported
processors. </p>
]]>
</flag>
<flag name="f-QxB" class="optimization" regexp="-QxB\b">
<![CDATA[
<p>Code is optimized for Intel Pentium M and compatible Intel processors. The
resulting code may contain unconditional use of features that are not supported
on other processors. This option also enables new optimizations in addition to
Intel processor-specific optimizations including advanced data layout and code
restructuring optimizations to improve memory accesses for Intel processors.</p>
<p> Do not use this option if you are executing a program on a processor that
is not an Intel processor. If you use this option on a non-compatible processor
to compile the main program (in Fortran) or the function main() in C/C++, the
program will display a fatal run-time error if they are executed on unsupported
processors. </p>
]]>
</flag>
<flag name="f-QxW" class="optimization" regexp="-QxW\b">
<![CDATA[
<p>Code is optimized for Intel Pentium 4 and compatible Intel processors;
this is the default for Intel?EM64T systems. The resulting code may contain
unconditional use of features that are not supported on other processors. </p>
]]>
</flag>
<flag name="f-parallel" class="optimization" regexp="-parallel\b">
<![CDATA[
<p>Tells the auto-parallelizer to generate multithreaded code for loops that can be safely executed in parallel.
To use this option, you must also specify option O2 or O3. The default numbers of threads spawned is equal to
the number of processors detected in the system where the binary is compiled. Can be changed by setting the
environment variable OMP_NUM_THREADS </p>
]]>
</flag>
<flag name="f-libguide.lib" class="optimization" regexp="libguide.lib\b">
<![CDATA[
<p>The use of -Qparallel to generate auto-parallelized code requires spport libraries that are
dynamically linked by default. Specifying libguide.lib on the link line, statically links in
libguide.lib to allow auto-parallelized binaries to work on systems which do not have the dynamic version
of this library installed.</p>
]]>
</flag>
<flag name="f-libguide40.lib" class="optimization" regexp="libguide40.lib\b">
<![CDATA[
<p>The use of -Qparallel to generate auto-parallelized code requires spport libraries that are
dynamically linked by default. Specifying libguide40.lib on the link line, statically links in
libguide40.lib to allow auto-parallelized binaries to work on systems which do not have the
dynamic version of this library installed.</p>
]]>
</flag>
<flag name="f-archSSE2" class="optimization" regexp="-arch\:SSE2\b">
<![CDATA[
<p> Optimizes for Intel Pentium 4 and compatible processors with Streaming SIMD Extensions 2 (SSE2).
]]>
</flag>
<flag name="f-no-prec-div" class="optimization" regexp="-no-prec.div">
(disable/enable[default] -prec-div)
<![CDATA[
<p>-no-prec-div enables optimizations that give slightly less precise results
than full IEEE division. </p>
<p>When you specify -no-prec-div along with some optimizations, such as
-xN and -xB (Linux) or /QxN and /QxB (Windows),
the compiler may change floating-point division computations into
multiplication by the reciprocal of the denominator.
For example, A/B is computed as A * (1/B) to improve the speed of the
computation.</p>
<p>However, sometimes the value produced by this transformation is
not as accurate as full IEEE division. When it is important to have fully
precise IEEE division, do not use -no-prec-div which will enable the
default -prec-div and the result is more accurate, with some loss of
performance.</p>
]]>
</flag>
<flag name="prof_gen" class="optimization" regexp="-prof-gen\b">
<![CDATA[
<p>Instrument program for profiling for the first phase of
two-phase profile guided otimization. This instrumentation gathers information
about a program's execution paths and data values but does not gather
information from hardware performance counters. The profile instrumentation
also gathers data for optimizations which are unique to profile-feedback
optimization.</p>
]]>
</flag>
<flag name="prof_use" class="optimization" regexp="-prof-use\b">
<![CDATA[
<p>Instructs the compiler to produce a profile-optimized
executable and merges available dynamic information (.dyn)
files into a pgopti.dpi file. If you perform multiple
executions of the instrumented program, -prof-use merges
the dynamic information files again and overwrites the
previous pgopti.dpi file.<br />
Without any other options, the current directory is
searched for .dyn files</p>
]]>
</flag>
<flag name="link_force_multiple1" class="optimization" regexp="-Wl.*muldefs\b">
<![CDATA[
<p>Enable SmartHeap and/or other library usage by forcing the linker to
ignore multiple definitions if present</p>
]]>
</flag>
<flag name="link_force_multiple2" class="optimization" regexp=".*FORCE.*MULTIPLE\b">
<![CDATA[
<p>Enable SmartHeap library usage by forcing the linker to
ignore multiple definitions</p>
]]>
</flag>
<flag name="SmartHeap" class="optimization" regexp="-L/home/cmplr/usr3/alrahate/cpu2006.1.0/lib -lsmartheap\b">
<![CDATA[
<p>MicroQuill SmartHeap Library V8.1 available from http://www.microquill.com/</p>
]]>
</flag>
<flag name="Enable-64bit-compiler" class="optimization" regexp="-L/opt/intel/cce/10.0.023/lib -I/opt/intel/cce/10.0.023/include\b">
<![CDATA[
<p>Enable the use of the 64-bit compiler by passing the directory names for the library and include files</p>
]]>
</flag>
<flag name="set_stack_space" class="optimization" regexp="(?:/\S+/)?/F\d*">
set the stack reserve amount specified to the linker
</flag>
<flag name="f-ansi-alias" class="optimization" regexp="-ansi-alias\b">
Enable/disable(DEFAULT) use of ANSI aliasing rules in
optimizations; user asserts that the program adheres to
these rules.
</flag>
<flag name="f-prefetch" class="optimization" regexp="-prefetch\b">
Enable/disable(DEFAULT) the compiler to generate prefetch instructions to prefetch data.
</flag>
<flag name="f-inline-calloc" class="optimization" regexp="-inline-calloc\b">
Directs the compiler to inline calloc() calls as malloc()/memset()
</flag>
<flag name="f-opt-malloc-options" class="optimization" regexp="-opt-malloc-options=3\b">
<![CDATA[
<p>The compiler adds setup code in the C/C++/Fortran main function to enable optimal malloc algorithms:</p>
<ul>
n=0: Default, no changes to the malloc options. No call to mallopt() is made. <br />
n=1: M_MMAP_MAX=2 and M_TRIM_THRESHOLD=0x10000000. Call mallopt with the two settings. <br />
n=2: M_MMAP_MAX=2 and M_TRIM_THRESHOLD=0x40000000. Call mallopt with these two settings. <br />
n=3: MALLOC_MMAP_MAX_=0 and MALLOC_TRIM_THRESHOLD=-1. Call mallopt with these two settings. This
will cause use of sbrk() calls instead of mmap() calls to get memory from the system. <br />
</ul>
</p>
<p>Function: int mallopt (int param, int value) When calling mallopt, the param argument
specifies the parameter to be set, and value the new value to be set. Possible choices
for param, as defined in malloc.h, are:
<ul>
M_TRIM_THRESHOLD This is the minimum size (in bytes) of the top-most, releasable chunk
that will cause sbrk to be called with a negative argument in order to return memory
to the system. <br />
M_TOP_PAD This parameter determines the amount of extra memory to obtain from the system
when a call to sbrk is required. It also specifies the number of bytes to retain when
shrinking the heap by calling sbrk with a negative argument. This provides the necessary
hysteresis in heap size such that excessive amounts of system calls can be avoided. <br />
M_MMAP_THRESHOLD All chunks larger than this value are allocated outside the normal heap,
using the mmap system call. This way it is guaranteed that the memory for these chunks
can be returned to the system on free. Note that requests smaller than this threshold
might still be allocated via mmap. <br />
M_MMAP_MAX The maximum number of chunks to allocate with mmap. Setting this to zero
disables all use of mmap.<br />
</ul>
</p>
]]>
</flag>
<flag name="f-vec-guard-write" class="optimization" regexp="-vec-guard-write\b">
Enables cache/bandwidth optimization for stores under conditionals (within vector loops)
</flag>
<flag name="f-par-runtime-control" class="optimization" regexp="-par-runtime-control\b">
Enable compiler to generate runtime control code for effective automatic parallelization
</flag>
<flag name="f-opt-ra-region-strategy-block" class="optimization" regexp="-opt-ra-region-strategy=block\b">
<![CDATA[
Select the method that the register allocator uses to partition each routine into regions<br>
routine - one region per routine<br>
block - one region per block<br>
trace - one region per trace<br>
loop - one region per loop<br>
default - compiler selects best option<br>
]]>
</flag>
<flag name="f-opt-ra-region-strategy-routine" class="optimization" regexp="-opt-ra-region-strategy=routine\b">
<![CDATA[
Select the method that the register allocator uses to partition each routine into regions<br>
routine - one region per routine<br>
block - one region per block<br>
trace - one region per trace<br>
loop - one region per loop<br>
default - compiler selects best option<br>
]]>
</flag>
<flag name="f-opt-multi-version-aggressive" class="optimization" regexp="-opt-multi-version-aggressive\b">
Enables more aggressive multi-versioning
</flag>
<flag name="f-auto" class="optimization" regexp="-auto\b">
Make all local variables AUTOMATIC. Same as -automatic
</flag>
<flag name="f-unroll-aggressive" class="optimization" regexp="-unroll-aggressive\b">
Enables more aggressive unrolling heuristics
</flag>
<flag name="f-opt-streaming-stores-always" class="optimization" regexp="-opt-streaming-stores.always\b">
<![CDATA[
<p>Specifies whether streaming stores are generated:</p>
<p>always - enables generation of streaming stores under the assumption that the application is memory bound</p>
<p>auto - compiler decides when streaming stores are used (DEFAULT)</p>
<p>never - disables generation of streaming stores</p>
]]>
</flag>
<flag name="f-Oi-" class="optimization" regexp="-Oi-">
Disables inline expansion of all intrinsic functions.
</flag>
<flag name="f-Op-" class="optimization" regexp="-Op-\b">
<![CDATA[
<p>Disables conformance to the ANSI C and IEEE 754 standards for
floating-point arithmetic.</p>
]]>
</flag>
<flag name="f-Oy" class="optimization" regexp="-Oy\b">
Allows use of EBP as a general-purpose register in optimizations.
</flag>
<flag name="f-Os" class="optimization" regexp="-Os\b">
<![CDATA[
<p>This option enables most speed optimizations, but disables some
that increase code size for a small speed benefit.</p>
]]>
</flag>
<flag name="f-Og" class="optimization" regexp="-Og\b">
This option enables global optimizations.
</flag>
<flag name="f-Ob_n" class="optimization" regexp="-Ob(0|1|2)\b">
<![CDATA[
<p>Specifies the level of inline function expansion.</p>
<p style="text-indent: -45px;margin-left: 45px">
Ob0 - Disables inlining of user-defined functions. Note that
statement functions are always inlined.</p>
<p style="text-indent: -45px;margin-left: 45px">
Ob1 - Enables inlining when an inline keyword or an inline
attribute is specified. Also enables inlining according
to the C++ language.</p>
<p style="text-indent: -45px;margin-left: 45px">
Ob2 - Enables inlining of any function at the compiler's
discretion. </p>
]]>
</flag>
<flag name="f-Gy" class="optimization" regexp="-Gy\b">
<![CDATA[
<p>This option tells the compiler to separate functions into COMDATs
for the linker.</p>
]]>
</flag>
<flag name="f-GF" class="optimization" regexp="-GF\b">
This option enables read only string-pooling optimization.
</flag>
<flag name="f-Gf" class="optimization" regexp="-Gf\b">
This option enables read/write string-pooling optimization.
</flag>
<flag name="f-Gs" class="optimization" regexp="-Gs\b">
<![CDATA[
<p>This option disables stack-checking for routines with 4096 bytes
of local variables and compiler temporaries.</p>
]]>
</flag>
</flagsdescription>
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。