代码拉取完成,页面将自动刷新
<?xml version="1.0"?>
<!DOCTYPE flagsdescription SYSTEM "http://www.spec.org/dtd/cpuflags1.dtd">
<flagsdescription>
<!-- filename to begin with "Intel-ic10-flags-file" -->
<filename>EM64T_Intel100_flags</filename>
<title>SPEC CPU2006 Flag Description for the Intel(R) C++ Compiler 10.0
for IA32 and Intel 64 applications and Intel(R) Fortran Compiler 10.0 for IA32 and Intel 64
applications</title>
<header>
<![CDATA[
<p style="text-align: left; color: red; font-size: larger; background-color: black">
Copyright © 2006 Intel Corporation. All Rights Reserved.</p>
]]>
</header>
<platform_settings>
<![CDATA[
<p><b>Platform settings</b></p>
<p>One or more of the following settings may have been set. If so, the "General Notes" section of the
report will say so; and you can read below to find out more about what these settings mean.</p>
<p><b>-I<path></b></p>
<p>
Compiler option to set the path for include files.<br>
Used in some integer peak benchmarks which were built using the Intel 64-bit compiler.
Used in some floating point peak benchmarks which were built using the Intel 32-bit compiler.
</p>
<p><b>-L<path></b></p>
<p>
Compiler option to set the path for library files.<br>
Used in some integer peak benchmarks which were built using the Intel 64-bit compiler.
Used in some floating point peak benchmarks which were built using the Intel 32-bit compiler.
</p>
<p><b>ulimit -s <n></b></p>
<p>
Sets the stack size to <b>n</b> kbytes, or <b>unlimited</b> to allow the stack size
to grow without limit.
</p>
<p><b>submit= MYMASK=`printf '0x%x' \$((1<<\$SPECCOPYNUM))`; /usr/bin/taskset \$MYMASK $command </b></p>
<p>When running multiple copies of benchmarks, the SPEC config file feature
<b>submit</b> is sometimes used to cause individual jobs to be bound to
specific processors. This specific submit command is used for Linux.
The description of the elements of the command are:
<ul>
<li><b>/usr/bin/taskset [options] [mask] [pid | command [arg] ... ]</b>: <br>
taskset is used to set or retreive the CPU affinity of a running
process given its PID or to launch a new COMMAND with a given CPU
affinity. The CPU affinity is represented as a bitmask, with the
lowest order bit corresponding to the first logical CPU and highest
order bit corresponding to the last logical CPU. When the taskset
returns, it is guaranteed that the given program has been scheduled
to a legal CPU.<br><br>
The default behaviour of taskset is to run a new command with a
given affinity mask: <br><br>
taskset [mask] [command] [arguments]</li>
<li><b>$MYMASK</b>: The bitmask (in hexadecimal) corresponding to a specific
SPECCOPYNUM. For example, $MYMASK value for the first copy of a
rate run will be 0x00000001, for the second copy of the rate will
be 0x00000002 etc. Thus, the first copy of the rate run will have a
CPU affinity of CPU0, the second copy will have the affinity CPU1
etc.</li>
<li><b>$command</b>: Program to be started, in this case, the benchmark instance
to be started.</li>
</ul>
</p>
]]>
</platform_settings>
<!--
******************************************************************************************************
* Compilers
******************************************************************************************************
-->
<flag name="intel_icc" class="compiler" regexp="(?:/\S+/)?icc\b">
<![CDATA[
<p>Invoke the Intel C compiler for IA32 and Intel 64 applications </p>
]]>
</flag>
<flag name="intel_icpc" class="compiler" regexp="(?:/\S+/)?icpc\b">
<![CDATA[
<p>Invoke the Intel C++ compiler for IA32 and Intel 64 applications </p>
]]>
</flag>
<flag name="intel_ifort" class="compiler" regexp="(?:/\S+/)?ifort\b">
Invoke the Intel Fortran compiler for IA32 and Intel 64 applications
</flag>
<flag name="Fifort-32bit" class="compiler" regexp="/opt/intel/fc/10.0.023/bin/ifort">
<example>/opt/intel/fc/10.0.023/bin/ifort</example>
<![CDATA[
<p>/opt/intel/fc/10.0.023/bin/ifort invokes the 32-bit Intel Fortran compiler.<br>
Also used to invoke linker for 32-bit programs
in Fortran and C/Fortran mixtures.</p>
]]>
</flag>
<flag name="Ficc-32bit" class="compiler" regexp="/opt/intel/cc/10.0.023/bin/icc">
<example>/opt/intel/cc/10.0.023/bin/icc</example>
<![CDATA[
<p>/opt/intel/cc/10.0.023/bin/icc invokes the 32-bit Intel C compiler.<br>
Also used to invoke linker for 32-bit C programs.</p>
]]>
</flag>
<flag name="Ficpc-32bit" class="compiler" regexp="/opt/intel/cc/10.0.023/bin/icpc">
<example>/opt/intel/cc/10.0.023/bin/icpc</example>
<![CDATA[
<p>/opt/intel/cc/10.0.023/bin/icpc invokes the 32-bit Intel C++ compiler.<br>
Also used to invoke linker for 32-bit C++ programs.</p>
]]>
</flag>
<flag name="intel_compiler_c99_mode" class="compiler" regexp="(?:/\S+/)?-Qc99\b">
Invoke the Intel C++ compiler in C99 mode
</flag>
<flag name="Ficc-32bit-includepath" class="compiler" regexp="-I/opt/intel/cc/10.0.023/include">
<example>-I/opt/intel/cc/10.0.023/include</example>
<![CDATA[
<p>-I/opt/intel/cc/10.0.023/include is the include path of 32-bit Intel C/C++ compiler</p>
]]>
</flag>
<flag name="Ficc-64bit-includepath" class="compiler" regexp="-I/opt/intel/cce/10.0.023/include">
<example>-I/opt/intel/cce/10.0.023/include</example>
<![CDATA[
<p>-I/opt/intel/cce/10.0.023/include is the include path of 64-bit Intel C/C++ compiler</p>
]]>
</flag>
<flag name="Ficc-32bit-libpath" class="compiler" regexp="-L/opt/intel/cc/10.0.023/lib">
<example>-L/opt/intel/cc/10.0.023/lib</example>
<![CDATA[
<p>-L/opt/intel/cc/10.0.023/lib is the library path of 32-bit Intel C/C++ compiler</p>
]]>
</flag>
<flag name="Ficc-64bit-libpath" class="compiler" regexp="-L/opt/intel/cce/10.0.023/lib">
<example>-L/opt/intel/cce/10.0.023/lib</example>
<![CDATA[
<p>-L/opt/intel/cce/10.0.023/lib is the library path of 64-bit Intel C/C++ compiler</p>
]]>
</flag>
<flag name="Fifort-32bit-includepath" class="compiler" regexp="-I/opt/intel/fc/10.0.023/include">
<example>-I/opt/intel/fc/10.0.023/include</example>
<![CDATA[
<p>-I/opt/intel/fc/10.0.023/include is the include path of 32-bit Intel Fortran compiler</p>
]]>
</flag>
<flag name="Fifort-32bit-libpath" class="compiler" regexp="-L/opt/intel/fc/10.0.023/lib">
<example>-L/opt/intel/fc/10.0.023/lib</example>
<![CDATA[
<p>-L/opt/intel/fc/10.0.023/lib is the library path of 32-bit Intel Fortran compiler</p>
]]>
</flag>
<!--
******************************************************************************************************
* Portability
******************************************************************************************************
-->
<!--<flag name="lowercase_routine_name" class="portability" regexp="(?:/\S+/)?-Qlowercase\b">
<![CDATA[
<p>For mixed-language benchmarks, tell the compiler to convert routine names to
lowercase for compatibility</p>
]]>
</flag>-->
<flag name="add-underscore_to_routine_name" class="portability" regexp="(?:/\S+/)?\/assume\:underscore\b">
<![CDATA[
<p>For mixed-language benchmarks, tell the compiler to assume that routine
names end with an underscore</p>
]]>
</flag>
<flag name="lowercase_routine_name" class="portability" regexp="(?:/\S+/)?-nofor_main\b">
<![CDATA[
<p>For mixed-language benchmarks, tell the compiler to ignore the main routine in Fortran</p>
]]>
</flag>
<flag name="assume_cplusplus_sources" class="portability" regexp="(?:/\S+/)?-TP\b">
Tell the compiler to treat source files as C++ regardless of the file extension
</flag>
<!--
******************************************************************************************************
* Optimizations
******************************************************************************************************
-->
<flag name="f-O1" class="optimization" regexp="-O1\b">
<![CDATA[
<p>Enables optimizations for speed and disables some optimizations that <br />
increase code size and affect speed. <br />
To limit code size, this option: <br />
- Enables global optimization; this includes data-flow analysis,
code motion, strength reduction and test replacement, split-lifetime
analysis, and instruction scheduling. <br />
- Disables intrinsic recognition and intrinsics inlining. <br />
The O1 option may improve performance for applications with very large
code size, many branches, and execution time not dominated by code within loops. <br />
On IA-32 Windows platforms, -O1 sets the following:</p>
<p style="margin-left: 25px">
/Qunroll0, /Oi-, /Op-, /Oy, /Gy, /Os, /GF (/Qvc7 and above),
/Gf (/Qvc6 and below), /Ob2, and /Og</p>
]]>
<include flag="f-unroll_n"/>
<include flag="f-Oi-"/>
<include flag="f-Op-"/>
<include flag="f-Oy"/>
<include flag="f-Gy"/>
<include flag="f-Os"/>
<include flag="f-GF"/>
<include flag="f-Gf"/>
<include flag="f-Ob_n"/>
<include flag="f-Og"/>
</flag>
<flag name="f-O2" class="optimization" regexp="-O2\b">
<![CDATA[
<p>Enables optimizations for speed. This is the generally recommended
optimization level. This option also enables: <br />
- Inlining of intrinsics<br />
- Intra-file interprocedural optimizations, which include: <br />
- inlining<br />
- constant propagation<br />
- forward substitution<br />
- routine attribute propagation<br />
- variable address-taken analysis<br />
- dead static function elimination<br />
- removal of unreferenced variables<br />
- The following capabilities for performance gain: <br />
- constant propagation<br />
- copy propagation<br />
- dead-code elimination<br />
- global register allocation<br />
- global instruction scheduling and control speculation<br />
- loop unrolling<br />
- optimized code selection<br />
- partial redundancy elimination<br />
- strength reduction/induction variable simplification<br />
- variable renaming<br />
- exception handling optimizations<br />
- tail recursions<br />
- peephole optimizations<br />
- structure assignment lowering and optimizations<br />
- dead store elimination<br />
</p>
<p>On IA-32 Windows platforms, -O2 sets the following:</p>
<p style="margin-left: 25px">
/Og, /Oi-, /Os, /Oy, /Ob2, /GF (/Qvc7 and above), /Gf (/Qvc6
and below), /Gs, and /Gy.</p>
]]>
<include flag="f-Oi-"/>
<include flag="f-Gs"/>
<include flag="f-Oy"/>
<include flag="f-Gy"/>
<include flag="f-Os"/>
<include flag="f-GF"/>
<include flag="f-Gf"/>
<include flag="f-Ob_n"/>
<include flag="f-Og"/>
<include flag="f-O1"/>
</flag>
<flag name="f-O3" class="optimization" regexp="-O3\b">
<![CDATA[
<p>Enables O2 optimizations plus more aggressive optimizations,
such as prefetching, scalar replacement, and loop and memory
access transformations. Enables optimizations for maximum speed,
such as: <br />
- Loop unrolling, including instruction scheduling<br />
- Code replication to eliminate branches<br />
- Padding the size of certain power-of-two arrays to allow
more efficient cache use.<br />
On IA-32 and Intel EM64T processors, when O3 is used with options
-ax or -x (Linux) or with options /Qax or /Qx (Windows), the compiler
performs more aggressive data dependency analysis than for O2, which
may result in longer compilation times. <br />
The O3 optimizations may not cause higher performance unless loop and
memory access transformations take place. The optimizations may slow
down code in some cases compared to O2 optimizations. <br />
The O3 option is recommended for applications that have loops that heavily
use floating-point calculations and process large data sets. On IA-32
Windows platforms, -O3 sets the following:</p>
<p style="margin-left: 25px">
/GF (/Qvc7 and above), /Gf (/Qvc6 and below), and /Ob2</p>
]]>
<include flag="f-GF"/>
<include flag="f-Gf"/>
<include flag="f-Ob_n"/>
<include flag="f-O2"/>
</flag>
<flag name="f-unroll_n" class="optimization" regexp="-unroll\d+\b">
Tells the compiler the maximum number of times to unroll loops.
</flag>
<flag name="f-ip" class="optimization" regexp="-ip\b">
This option enables additional interprocedural optimizations for single
file compilation. These optimizations are a subset of full intra-file
interprocedural optimizations. One of these optimizations enables the
compiler to perform inline function expansion for calls to functions
defined within the current source file.
</flag>
<flag name="f-ipo" class="optimization" regexp="-ipo\b">
<![CDATA[
<p>Multi-file ip optimizations that includes:<br />
- inline function expansion<br />
- interprocedural constant propogation<br />
- dead code elimination<br />
- propagation of function characteristics<br />
- passing arguments in registers<br />
- loop-invariant code motion</p>
]]>
</flag>
<flag name="f-fast" class="optimization" regexp="-fast\b">
<![CDATA[
<p>The -fast option enhances execution speed across the entire program
by including the following options that can improve run-time performance:</p>
<p style="text-indent: -45px;margin-left: 45px">
-O3 (maximum speed and high-level optimizations)</p>
<p style="text-indent: -45px;margin-left: 45px">
-ipo (enables interprocedural optimizations across files)</p>
<p style="text-indent: -45px;margin-left: 45px">
-xT (generate code specialized for Intel(R) Core(TM)2 Duo processors, Intel(R) Core(TM)2 Quad processors
and Intel(R) Xeon(R) processors with SSSE3)</p>
<p style="text-indent: -45px;margin-left: 45px">
-no-prec-div (disable -prec-div)
where -prec-div improves precision of FP divides (some speed impact)</p>
<p>To override one of the options set by /fast, specify that option after the
-fast option on the command line. The exception is the xT or QxT option
which can't be overridden. The options set by /fast may change from
release to release.</p>
]]>
<include flag="f-O3"/>
<include flag="f-ipo"/>
<include flag="f-xT"/>
<include flag="f-no-prec-div"/>
</flag>
<flag name="f-xT" class="optimization" regexp="-xT\b">
<![CDATA[
<p>Code is optimized for Intel(R) Core(TM)2 Duo processors, Intel(R) Core(TM)2 Quad
processors and Intel(R) Xeon(R) processors with SSSE3.
The resulting code may contain unconditional use of features that are not supported
on other processors. This option also enables new optimizations in addition to
Intel processor-specific optimizations including advanced data layout and code
restructuring optimizations to improve memory accesses for Intel processors.</p>
<p> Do not use this option if you are executing a program on a processor that
is not an Intel processor. If you use this option on a non-compatible processor
to compile the main program (in Fortran) or the function main() in C/C++, the
program will display a fatal run-time error if they are executed on unsupported
processors. </p>
]]>
</flag>
<flag name="f-QxB" class="optimization" regexp="-QxB\b">
<![CDATA[
<p>Code is optimized for Intel Pentium M and compatible Intel processors. The
resulting code may contain unconditional use of features that are not supported
on other processors. This option also enables new optimizations in addition to
Intel processor-specific optimizations including advanced data layout and code
restructuring optimizations to improve memory accesses for Intel processors.</p>
<p> Do not use this option if you are executing a program on a processor that
is not an Intel processor. If you use this option on a non-compatible processor
to compile the main program (in Fortran) or the function main() in C/C++, the
program will display a fatal run-time error if they are executed on unsupported
processors. </p>
]]>
</flag>
<flag name="f-QxW" class="optimization" regexp="-QxW\b">
<![CDATA[
<p>Code is optimized for Intel Pentium 4 and compatible Intel processors;
this is the default for Intel?EM64T systems. The resulting code may contain
unconditional use of features that are not supported on other processors. </p>
]]>
</flag>
<flag name="auto_ilp32" class="optimization" regexp="-auto_ilp32\b">
<![CDATA[
<p>This option instructs the compiler to analyze the program to
determine if there are 64-bit pointers which can be safely
shrunk into 32-bit pointers. In order for this option to be
effective the compiler must be able to optimize using the
-ipo option, and must be able to analyze all library/external
calls the program makes. This option imposes the following
restrictions on the program:<br />
The program cannot malloc any objects greater than 2**31 bytes
in size.<br />
If the program does not satisfy this restriction, unpredictable
behavior may occur.</p>
]]>
</flag>
<flag name="f-Qparallel" class="optimization" regexp="-Qparallel\b">
<![CDATA[
<p>Tells the auto-parallelizer to generate multithreaded code for loops that can be safely executed in parallel.
To use this option, you must also specify option O2 or O3. The default numbers of threads spawned is equal to
the number of processors detected in the system where the binary is compiled. Can be changed by setting the
environment variable OMP_NUM_THREADS </p>
]]>
</flag>
<flag name="f-libguide.lib" class="optimization" regexp="libguide.lib\b">
<![CDATA[
<p>The use of -Qparallel to generate auto-parallelized code requires spport libraries that are
dynamically linked by default. Specifying libguide.lib on the link line, statically links in
libguide.lib to allow auto-parallelized binaries to work on systems which do not have the dynamic version
of this library installed.</p>
]]>
</flag>
<flag name="f-libguide40.lib" class="optimization" regexp="libguide40.lib\b">
<![CDATA[
<p>The use of -Qparallel to generate auto-parallelized code requires spport libraries that are
dynamically linked by default. Specifying libguide40.lib on the link line, statically links in
libguide40.lib to allow auto-parallelized binaries to work on systems which do not have the
dynamic version of this library installed.</p>
]]>
</flag>
<flag name="f-archSSE2" class="optimization" regexp="-arch\:SSE2\b">
<![CDATA[
<p> Optimizes for Intel Pentium 4 and compatible processors with Streaming SIMD Extensions 2 (SSE2).
]]>
</flag>
<flag name="f-no-prec-div" class="optimization" regexp="-no-prec.div">
(disable/enable[default] -Qprec-div[-])
<![CDATA[
<p>-Qprec-dev improves precision of floating-point divides. It has a slight
impact on speed. -Qprec-dev- disables this option and enables
optimizations that give slightly less precise results than full IEEE
division.</p>
<p>When you specify -Qprec-dev- along with some optimizations, such as
-xN and -xB (Linux) or /QxN and /QxB (Windows),
the compiler may change floating-point division computations into multiplication
by the reciprocal of the denominator.
For example, A/B is computed as A * (1/B) to improve the speed of the
computation.</p>
<p>However, sometimes the value produced by this transformation is
not as accurate as full IEEE division. When it is important to have fully
precise IEEE division, do not use -Qprec-dev- which will enable the
default -Qprec-dev and the result is more accurate, with some
loss of performance.</p>
]]>
</flag>
<flag name="prof_gen" class="optimization" regexp="-prof_gen\b">
<![CDATA[
<p>Instrument program for profiling for the first phase of
two-phase profile guided otimization. This instrumentation gathers information
about a program's execution paths and data values but does not gather
information from hardware performance counters. The profile instrumentation
also gathers data for optimizations which are unique to profile-feedback
optimization.</p>
]]>
</flag>
<flag name="prof_use" class="optimization" regexp="-prof_use\b">
<![CDATA[
<p>Instructs the compiler to produce a profile-optimized
executable and merges available dynamic information (.dyn)
files into a pgopti.dpi file. If you perform multiple
executions of the instrumented program, -prof-use merges
the dynamic information files again and overwrites the
previous pgopti.dpi file.<br />
Without any other options, the current directory is
searched for .dyn files</p>
]]>
</flag>
<flag name="link_force_multiple1" class="optimization" regexp="-Wl.*muldefs\b">
<![CDATA[
<p>Enable SmartHeap and/or other library usage by forcing the linker to
ignore multiple definitions if present</p>
]]>
</flag>
<flag name="link_force_multiple2" class="optimization" regexp=".*FORCE.*MULTIPLE\b">
<![CDATA[
<p>Enable SmartHeap library usage by forcing the linker to
ignore multiple definitions</p>
]]>
</flag>
<flag name="SmartHeap" class="optimization" regexp="-L/spec/cpu2006/lib -lsmartheap\b">
<![CDATA[
<p>MicroQuill SmartHeap Library V8.1 available from http://www.microquill.com/</p>
]]>
</flag>
<flag name="Enable-64bit-compiler" class="optimization" regexp="-L/opt/intel/cce/10.0.023/lib -I/opt/intel/cce/10.0.023/include\b">
<![CDATA[
<p>Enable the use of the 64-bit c/c++ compiler by passing the directory names for the library and include files</p>
]]>
</flag>
<flag name="Enable-32bit-compiler" class="optimization" regexp="-L/opt/intel/cc/10.0.023/lib -I/opt/intel/cc/10.0.023/include\b">
<![CDATA[
<p>Enable the use of the 32-bit c/c++ compiler by passing the directory names for the library and include files</p>
]]>
</flag>
<flag name="Enable-32bit-fortran-compiler" class="optimization" regexp="-L/opt/intel/fc/10.0.023/lib -I/opt/intel/fc/10.0.023/include\b">
<![CDATA[
<p>Enable the use of the 32-bit fortran compiler by passing the directory names for the library and include files</p>
]]>
</flag>
<flag name="set_stack_space" class="optimization" regexp="(?:/\S+/)?/F\d*">
set the stack reserve amount specified to the linker
</flag>
<flag name="f-ansi-alias" class="optimization" regexp="-ansi-alias\b">
Enable/disable(DEFAULT) use of ANSI aliasing rules in
optimizations; user asserts that the program adheres to
these rules.
</flag>
<flag name="f-prefetch" class="optimization" regexp="-prefetch\b">
Enable/disable(DEFAULT) the compiler to generate prefetch instructions to prefetch data.
</flag>
<flag name="f-opt-streaming-stores-always" class="optimization" regexp="-opt-streaming-stores.always\b">
Specifies whether streaming stores are generated:
always - enables generation of streaming stores under the assumption that the application is memory bound
auto - compiler decides when streaming stores are used (DEFAULT)
never - disables generation of streaming stores
</flag>
<flag name="f-Oi-" class="optimization" regexp="-Oi-">
Disables inline expansion of all intrinsic functions.
</flag>
<flag name="f-Op-" class="optimization" regexp="-Op-\b">
<![CDATA[
<p>Disables conformance to the ANSI C and IEEE 754 standards for
floating-point arithmetic.</p>
]]>
</flag>
<flag name="f-Oy" class="optimization" regexp="-Oy\b">
Allows use of EBP as a general-purpose register in optimizations.
</flag>
<flag name="f-Os" class="optimization" regexp="-Os\b">
<![CDATA[
<p>This option enables most speed optimizations, but disables some
that increase code size for a small speed benefit.</p>
]]>
</flag>
<flag name="f-Og" class="optimization" regexp="-Og\b">
This option enables global optimizations.
</flag>
<flag name="f-Ob_n" class="optimization" regexp="-Ob(0|1|2)\b">
<![CDATA[
<p>Specifies the level of inline function expansion.</p>
<p style="text-indent: -45px;margin-left: 45px">
Ob0 - Disables inlining of user-defined functions. Note that
statement functions are always inlined.</p>
<p style="text-indent: -45px;margin-left: 45px">
Ob1 - Enables inlining when an inline keyword or an inline
attribute is specified. Also enables inlining according
to the C++ language.</p>
<p style="text-indent: -45px;margin-left: 45px">
Ob2 - Enables inlining of any function at the compiler's
discretion. </p>
]]>
</flag>
<flag name="f-Gy" class="optimization" regexp="-Gy\b">
<![CDATA[
<p>This option tells the compiler to separate functions into COMDATs
for the linker.</p>
]]>
</flag>
<flag name="f-GF" class="optimization" regexp="-GF\b">
This option enables read only string-pooling optimization.
</flag>
<flag name="f-Gf" class="optimization" regexp="-Gf\b">
This option enables read/write string-pooling optimization.
</flag>
<flag name="f-Gs" class="optimization" regexp="-Gs\b">
<![CDATA[
<p>This option disables stack-checking for routines with 4096 bytes
of local variables and compiler temporaries.</p>
]]>
</flag>
</flagsdescription>
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。