代码拉取完成,页面将自动刷新
<?xml version="1.0"?>
<!DOCTYPE flagsdescription
SYSTEM "http://www.spec.org/dtd/cpuflags1.dtd"
>
<flagsdescription>
<!--
<filename>flags</filename>
-->
<title>Fujitsu Siemens Computers SPEC CPU2006 Flag Description</title>
<style>
<![CDATA[
body { background: white; }
]]>
</style>
<!-- HEADERs -->
<header>
<![CDATA[
<p>Compilers: Intel C++ Compilers, Version 9.1
for 32/64bit-based applications in Windows<br>
Operating system: Windows Server 2003 x64 Enterprise Edition (64-bit)<br>
Last updated: 02-Mar-2007 PS
</p>
<p>The text for many of the descriptions below was taken
from the documentation of the Intel Compilers.
This documentation is copyright © 2006 Intel Corporation. All Rights Reserved.<br>
The original documentation is distributed with the Intel compilers.
</p>
<hr />
]]>
</header>
<header class="optimization">
<![CDATA[
<p>HEADER for OPTIMIZATION</p>
]]>
</header>
<header class="portability">
<![CDATA[
<p>HEADER for PORTABILITY</p>
]]>
</header>
<header class="compiler">
<![CDATA[
<p>HEADER for COMPILER</p>
]]>
</header>
<header class="other">
<![CDATA[
<p>HEADER for OTHER</p>
]]>
</header>
<!-- /HEADERs -->
<platform_settings>
<![CDATA[
<p><b>Platform settings</b></p>
<p>One or more of the following settings may have been set. If so, the "General Notes" section of the
report will say so; and you can read below to find out more about what these settings mean.</p>
<p><b>Hardware Prefetch:</b></p>
<p>
This BIOS option allows the enabling/disabling of a processor mechanism to
prefetch data into the cache according to a pattern-recognition algorithm.
</p>
<p>
In some cases, setting this option to Disabled may improve
performance. Users should only disable this option
after performing application benchmarking to verify improved
performance in their environment.
</p>
<p><b>Adjacent Sector Prefetch:</b></p>
<p>
This BIOS option allows the enabling/disabling of a processor mechanism to
fetch the adjacent cache line within an 128-byte sector that contains
the data needed due to a cache line miss.
</p>
<p>
In some cases, setting this option to Disabled may improve
performance. Users should only disable this option
after performing application benchmarking to verify improved
performance in their environment.
</p>
<p><b>/I<path></b></p>
<p>
Compiler option to set the path for include files.<br>
Used in some peak benchmarks which were build using the Intel 64-bit compiler.
</p>
<p><b>submit= specperl -e "system sprintf qq{start /b /wait /affinity %x %s}, (1<<$SPECCOPYNUM), qq{ $command } " </b></p>
<p>
When running multiple copies of benchmarks, the SPEC config file feature
<b>submit</b> is sometimes used to cause individual jobs to be bound to
specific processors. This specific submit command is used for Windows.
The description of the elements of the command are:
<ul>
<li><b>specperl</b>: SPEC's version of perl.
<ul><li> <b>-e</b>: Execute a single line of perl script.</li>
<li><b>system</b>: Execute system command that follows (in this case
the <b>sprintf</b> command) and wait for the child process to complete.</li>
<li><b>sprintf</b>: Return formatted string (in this case the formatted
<b>start</b> command)</li></ul></li>
<li><b>start</b>
<ul><li> <b>/b</b>: Start application without creating a new command prompt window</li>
<li><b>/wait</b>: Start application and wait for it to terminate</li>
<li><b>affinity %x</b>: bind the process to CPUs matching the integer bitmask <b>%x</b>.
This is determined by the <b>(1<<$SPECCOPYNUM)</b> value.</li>
<li><b>%s</b>: Program to be started matching the string value <b>%s</b>. The string
value is determined by the <b>qq{ $command}</b> value, where <b>$command</b>
is the benchmark instance to be started.</li></ul></li>
</ul>
</p>
]]>
</platform_settings>
<!-- OPTIMIZATION -->
<flag name="F-Fstacksize" class="optimization" regexp="-F\d+">
<example>-F10000</example>
<![CDATA[
<p>Specifies the stack reserve amount for the program.</p>
<p>-F<n><br>
<n> is the stack reserve amount.
It can be specified as a decimal integer or by using a C-style convention
for constants (for example, -F0x1000).<br>
Default: The stack size default is chosen by the operating system.</p>
]]>
</flag>
<flag name="f-fast" class="optimization">
<example>-fast</example>
<![CDATA[
<p>Maximize speed across the entire program.</p>
<p>Turns on:</p>
<ul>
<li>-O3</li>
<li>-Qprec-div-</li>
<li>-QxP</li>
<li>-Qipo</li>
</ul>
]]>
<include flag="F-O3"/>
<include flag="F-Qprec-div-"/>
<include flag="F-QxP"/>
<include flag="F-Qipo"/>
</flag>
<flag name="F-O3" class="optimization" regexp="[-/]O3">
<example>-O3</example>
<![CDATA[
<p>Optimizes for speed. Enables high-level optimization. This level does
not guarantee higher performance. Using this option may increase the
compilation time. Impact on performance is application dependent, some
applications may not see a performance improvement.</p>
<p>The optimizations include:</p>
<ul>
<li>All optimizations done with -O2</li>
<li>loop unrolling, including instruction scheduling</li>
<li>code replication to eliminate branches</li>
<li>padding the size of certain power-of-two arrays to allow more efficient cache use.</li>
<li>When used with -Qax or -Qx, it causes the compiler to perform
more aggressive data dependency analysis than for -O2.</li>
</ul>
]]>
<include flag="F-O2"/>
</flag>
<flag name="F-Qprec-div-" class="optimization" regexp="[-/]Qprec-div-?">
<example>-Qprec-div-</example>
<![CDATA[
<p>Enables[disables] improved precision of floating-point divides.
Disabling may slightly improve speed.
Default Enabled.</p>
]]>
</flag>
<flag name="F-QxP" class="optimization" regexp="[-/]Qx(K|W|N|P|B)">
<example>-QxP</example>
<![CDATA[
<p>-Qx<i>processor</i> This option directs the compiler
to generate specialized and optimized code for the Intel processor
that executes your program.
It lets you target your program to run on a specific Intel processor.
</p>
<p><i>processor</i> Is the processor
for which you want to target your program.<br>
Here: P Code is optimized for Intel Core Duo processors,
Intel Core Solo processors, Intel Pentium 4 processors with Steaming SIMD
Extensions 3, and compatible Intel processors with Streaming SIMD Extensions 3.
The resulting code may contain unconditional use of features
that are not supported on other processors.<br>
This option also enables new optimizations in addition to Intel
processor-specific optimizations including advanced data layout and code
restructuring optimizations to improve memory accesses for Intel processors.
</p>
<p>Programs compiled with -QxP will display a fatal run-time error
if they are executed on unsupported processors.
</p>
<p>On Intel EM64T systems, W, P, and T are the only valid <i>processor</i> values.
</p>
]]>
</flag>
<flag name="F-Qipo" class="optimization" regexp="[-/]Qipo(5|)">
<example>-Qipo</example>
<![CDATA[
<p>-Qipo[<i>n</i>]</p>
<p>This option enables interprocedural optimizations between files.
This is also called multifile interprocedural optimization (multifile IPO)
or Whole Program Optimization (WPO).
</p>
<p>When you specify this option, the compiler performs inline function expansion
for calls to functions defined in separate files.
</p>
<p>You cannot specify the names for the object files that are created.
</p>
<p><i>n</i> Is an optional integer that specifies
the number of object files the compiler should create.
The integer must be greater than or equal to 0.<br>
If you do not specify <i>n</i>, the default is 0.
</p>
<p>If <i>n</i> is 0, the compiler decides whether to create one or more object files
based on an estimate of the size of the application.
It generates one object file for small applications,
and two or more object files for large applications.
</p>
<p>If <i>n</i> is greater than 0, the compiler generates <i>n</i> object files,
unless <i>n</i> exceeds the number of source files (<i>m</i>),
in which case the compiler generates only <i>m</i> object files.
</p>
]]>
</flag>
<flag name="F-O2" class="optimization" regexp="[-/]O2">
<example>-O2</example>
<![CDATA[
<p>Optimizes for speed.
<br>The -O2 option includes the following options:</p>
<ul>
<li>-Og</li>
<li>-Oi-</li>
<li>-Os</li>
<li>-Oy</li>
<li>-Ob1</li>
<li>-Gs</li>
</ul>
<p>This options defaults to ON.</p>
<p>This option also enables:</p>
<ul>
<li>inlining of intrinsics</li>
<li>Intra-file interprocedural optimizations including:</li>
<ul>
<li>inlining</li>
<li>constant propagation</li>
<li>forward substitution</li>
<li>routine attribute propagation</li>
<li>variable address-taken analysis</li>
<li>dead static function elimination</li>
<li>removal of unreferenced variables.</li>
</ul>
<li>The following performance optimizations:</li>
<ul>
<li>copy propogation.</li>
<li>dead-code elimination</li>
<li>global register allocation</li>
<li>global instruction scheduling and control speculation</li>
<li>loop unrolliing</li>
<li>optimized code selection</li>
<li>partial redundancy elimination</li>
<li>strength reduction/induction variable simplification</li>
<li>variable renaming</li>
<li>exception handling optimizations</li>
<li>tail recursions</li>
<li>peephole optimizations</li>
<li>structure assignment lowering and optimization</li>
<li>dead store elimination</li>
</ul>
</ul>
]]>
<include flag="F-Og"/>
<include flag="F-Oi"/>
<include flag="F-Os"/>
<include flag="F-Oy"/>
<include flag="F-Obn"/>
<include flag="F-Gs"/>
</flag>
<flag name="F-Qip" class="optimization" regexp="[-/]Qip">
<example>-Qip</example>
<![CDATA[
<p>Enables single-file interprocedural optimizations within a file.</p>
]]>
</flag>
<flag name="F-Qparallel" class="optimization" regexp="[-/]Qparallel">
<example>-Qparallel</example>
<![CDATA[
<p>This option tells the auto-parallelizer to generate multithreaded code
for loops that can be safely executed in parallel.
</p>
<p>To use this option, you must also specify -O2 or -O3.
</p>
]]>
</flag>
<flag name="F-Qprof_gen" class="optimization" regexp="[-/]Qprof_gen">
<example>-Qprof_gen</example>
<![CDATA[
<P>This option instruments a program for profiling
as first step in Profile Guided Optimization.
</P>
<P>Profile Guided Optimization (PGO) consists of 3 phases:<br>
Phase 1: Compile and generate instrumented code in preparation
to gather profiling information (compiler flag -Qprof_gen).<br>
Phase 2: Execute the instrumented code and gather profiling information.<br>
Phase 3: Recompile the code and use the profiling information
for improved optimization (compiler flag -Qprof_use).
</P>
<P>The option<i> -Qprof_gen </i>instruments a program
for profiling to get the execution count of each basic block.
It also creates a new static profile information file (.spi).
This flag is used in phase 1 of the Profile Guided Optimizer (PGO)
to instruct the compiler to produce code in your object files
in preparation for instrumented execution.
</P>
<P>The instrumented code<br>
<UL>
<LI>Gathers information regarding execution paths.
<LI>Gathers information regarding data values.
<LI>Does not use hardware performance counters.
</LI>
</UL>
</P>
]]>
</flag>
<flag name="F-Qprof_use" class="optimization" regexp="[-/]Qprof_use">
<example>-Qprof_use</example>
<![CDATA[
<P>This option enables the use of profiling information during optimization
as final step in Profile Guided Optimization.
</P>
<P>Profile Guided Optimization (PGO) consists of 3 phases:<br>
Phase 1: Compile and generate instrumented code in preparation
to gather profiling information (compiler flag -Qprof_gen).<br>
Phase 2: Execute the instrumented code and gather profiling information.<br>
Phase 3: Recompile the code and use the profiling information
for improved optimization (compiler flag -Qprof_use).
</P>
<P>The option <i>-Qprof_use</i> instructs the compiler to use the profiling
information from phase 2 of PGO in order to produce a profile-optimized
executable (phase 3 of PGO).
</p>
<p>
It also enables function splitting (option -Qfnsplit)
and function grouping during optimization.
</P>
<P>Note that there is no way to turn off function grouping
if you enable it using this option.
</P>
<P>The recompilation with <i>-Qprof_use</i><br>
<UL>
<LI>Uses information regarding execution paths.
<LI>Uses information regarding data values.
<LI>Does not use hardware performance counters.
<LI>Uses techniques (like function grouping) which are not available without PGO.
</LI>
</UL>
</p>
]]>
<include flag="F-Qfnsplit"/>
</flag>
<flag name="F-Qfnsplit" class="optimization">
<example>-Qfnsplit</example>
<![CDATA[
<p>Enables function splitting.</p>
<p>This option enables function splitting if -Qprof-use is also specified.
Otherwise, this option has no effect.</p>
<p>It is enabled automatically if you specify -Qprof-use. If you do not specify
one of those options, the default is -Qfnsplit-, which disables
function splitting but leaves function grouping enabled.</p>
<p>To disable function splitting when you use -Qprof-use, specify -Qfnsplit-.</p>
]]>
</flag>
<flag name="F-Og" class="optimization" regexp="[-/]Og">
<example>-Og</example>
<![CDATA[
<p>Enables global optimizations.</p>
]]>
</flag>
<flag name="F-Oi" class="optimization" regexp="[-/]Oi-?">
<example>-Oi</example>
<![CDATA[
<p>Enables/disables inline expansion of intrinsic functions.</p>
<p>Default enabled</p>
]]>
</flag>
<flag name="F-Os" class="optimization" regexp="[-/]Os">
<example>-Os</example>
<![CDATA[
<p>This option enables most speed optimizations, but disables some that increase
code size for a small speed benefit.</p>
<p>Default enabled</p>
]]>
</flag>
<flag name="F-Oy" class="optimization" regexp="[-/]Oy-?">
<example>-Oy</example>
<![CDATA[
<p>Enables [disables] the use of the EBP register in optimizations.
When you disable with <i>-Oy-</i>, the EBP register is used as frame pointer.
-Oy has the effect of reducing the number of general-purpose registers by 1,
and can produce slightly less efficient code.</p>
<p>Default enabled</p>
]]>
</flag>
<flag name="F-Obn" class="optimization" regexp="[-/]Ob[1 2 3]">
<example>-Ob<n></example>
<![CDATA[
<p><b><i>n</i> = 0</b>
<br>Disables inlining of user-defined functions.
However, statement functions are always inlined</p>
<p><b><i>n</i> = 1</b>
<br>Enables inlining of functions declared with the __inline keyword.
Also enables inlining according to the C++ language</p>
<p><b><i>n</i> = 2</b>
<br>Enables inlining of any function.
However, the compiler decides which functions are inlined.
This option enables interprocedural optimizations and has the same
effect as specifying option <i>Qip</i>.</p>
<p>Default enabled with <i>n</i> = 2</p>
]]>
</flag>
<flag name="F-Gs" class="optimization" regexp="[-/]Gs<n>?">
<example>-Gs</example>
<![CDATA[
<p>Disables stack-checking for routines with n or more bytes of local
variables and compiler temporaries.</p>
<p>Default enabled with <i>n</i> = 4096.</p>
]]>
</flag>
<flag name="F-Oa" class="optimization" regexp="[-/]Oa-?">
<example>-Oa</example>
<![CDATA[
<p>Assume [not assume] no aliasing</p>
<p>Default disabled</p>
]]>
</flag>
<flag name="F-Ot" class="optimization" regexp="[-/]Ot">
<example>-Ot</example>
<![CDATA[
<p>Enables all speed optimizations.</p>
<p>Overrides -Os</p>
]]>
</flag>
<flag name="F-Ow" class="optimization" regexp="[-/]Ow-?">
<example>-Ow</example>
<![CDATA[
<p>Assume[not assume] no cross function aliasing.</p>
]]>
</flag>
<flag name="F-Gf" class="optimization" regexp="[-/]Gf">
<example>-Gf</example>
<![CDATA[
<p>Enables string-pooling optimization.</p>
]]>
</flag>
<flag name="F-Gy" class="optimization" regexp="[-/]Gy">
<example>-Gy</example>
<![CDATA[
<p>Packages functions to enable linker optimization.</p>
<p>Default enabled</p>
]]>
</flag>
<flag name="F-Qax" class="optimization" regexp="[-/]Qax[KWNPB]">
<example>-QaxP</example>
<![CDATA[
<p>Generates specialized code for processor specific codes K, W, N, P while also generating generic IA-32 code.</p>
<ul>
<li><b>K</b> = Intel Pentium III and compatible Intel processors</li>
<li><b>W</b> = Intel Pentium 4 and compatible Intel processors</li>
<li><b>N</b> = Intel Pentium 4 and compatible Intel processors.
These options also enable advanced data layout and code restructuring
optimizations to improve memory accesses for Intel processors.</li>
<li><b>P</b> = Intel Pentium 4 processor with Streaming SIMD 3 (SSE3) support.
These option also enable advanced data layout and code restructuring optimizations
to improve memory accesses for Intel processors.</li>
</ul>
]]>
</flag>
<flag name="F-Qrcd" class="optimization" regexp="[-/]Qrcd">
<example>-Qrcd</example>
<![CDATA[
<p>Enables[disables] fast conversions of floating-point to integer conversions.
This option does not guarantee that any particular rounding mode will be used.</p>
]]>
</flag>
<flag name="F-Qansi_alias" class="optimization" regexp="[-/]Qansi_alias-?">
<example>-Qansi_alias</example>
<![CDATA[
<p><b>for C and C++</b><br />
<ul>
Qansi_alias directs the compiler to assume the following:
<li>Arrays are not accessed out of bounds.</li>
<li>Pointers are not cast to non-pointer types, and vice-versa.</li>
<li>References to objects of two different scalar types cannot alias.
For example, an object of type int cannot alias with an object of type float,
or an object of type float cannot alias with an object of type double.</li>
</ul>
</p>
<p>If your program satisfies the above conditions, setting the -Qansi_alias
flag will help the compiler better optimize the program. However, if your
program does not satisfy one of the above conditions, the -Qansi_alias
flag may lead the compiler to generate incorrect code.</p>
<p><b>for Fortran</b><br />
Enables (default) or disables the compiler to assume that the program adheres to the ANSI Fortran type aliasablility rules.
For example, an object of type real cannot be accessed as an integer.
You should see the ANSI Standard for the complete set of rules.</p>
]]>
</flag>
<flag name="F-Qfp_port" class="optimization" regexp="[-/]Qfp_port">
<example>-Qfp_port</example>
<![CDATA[
<p>round fp results at assignments & casts (some speed impact)</p>
]]>
</flag>
<flag name="F-Qprefetch" class="optimization" regexp="[-/]Qprefetch">
<example>-Qprefetch</example>
<![CDATA[
<p>Enable prefetch insertion.</p>
<p>Default enabled</p>
]]>
</flag>
<flag name="F-Qunroll" class="optimization" regexp="[-/]Qunroll<n>">
<example>-Qunroll<n></example>
<![CDATA[
<p>Specifies the maximum number of times to unroll a loop. <i>n</i> = 0 disables loop unrolling.</p>
<p>Default: the compiler uses default heuristics when unrolling loops.</p>
]]>
</flag>
<flag name="F-Zp" class="optimization" regexp="[-/]Zp[1248]}">
<example>-Zp</example>
<![CDATA[
<p>Specifies the strictest alignment constraint for structure and union types as 1, 2. 4. 8 or 16 bytes</p>
<p>Default is 16.</p>
<p>Problem: 16 is also possible. How to write regexp?</p>
]]>
</flag>
<flag name="F-arch:SSE" class="optimization" regexp="[-/]arch:SSE">
<example>-arch:SSE</example>
<![CDATA[
<p>Enables the compiler to use SSE instructions.</p>
]]>
</flag>
<flag name="F-arch:SSE2" class="optimization" regexp="[-/]arch:SSE2">
<example>-arch:SSE2</example>
<![CDATA[
<p>Enables the compiler to use SSE2 instructions.</p>
]]>
</flag>
<flag name="F-Qpc64" class="optimization" regexp="[-/]Qpc64">
<example>-Qpc64</example>
<![CDATA[
<p>Enables floating-point significand precision control.
The value is used to round the significand to the correct number of bits.
The value must be either 32, 64 or 80.</p>
<p>Default enabled</p>
]]>
</flag>
<flag name="F-Ox" class="optimization" regexp="[-/]Ox">
<example>-Ox</example>
<![CDATA[
<p>Same as the -O2 option: enables -Gs, and -Ob1, -Og, -Oy, and -Ot.</p>
]]>
<include flag="F-Gs" />
<include flag="F-Obn" />
<include flag="F-Og" />
<include flag="F-Oy" />
<include flag="F-Ot" />
</flag>
<flag name="F-auto" class="optimization" regexp="[-/]auto">
<example>-auto</example>
<![CDATA[
<p>Determines whether local variables are put on the run-time stack.</p>
]]>
</flag>
<flag name="F-Qscalar_rep" class="optimization" regexp="[-/]Qscalar_rep-?">
<example>-Qscalar_rep-</example>
<![CDATA[
<p>Enables[disables] scalar replacement performed during loop transformations.
<br />(requires /O3).</p>
]]>
</flag>
<flag name="F-linkMultiple" class="optimization" regexp="-link -FORCE:MULTIPLE">
<example>-link -FORCE:MULTIPLE</example>
<![CDATA[
<p>Force Linking even if multiple entry names are found.</p>
]]>
</flag>
<flag name="F-Qcxx-features" class="optimization" regexp="[-/]Qcxx-features">
<example>-Qcxx-features</example>
<![CDATA[
<p>This option enables standard C++ features without disabling Microsoft
features within the bounds of what is provided in the Microsoft headers and
libraries.</p>
<p>This option has the same effect as specifying -GX -GR.</p>
<p>-GX Enables C++ exception handling.<br>
-GR Enables C++ Run Time Type Information (RTTI).</p>
]]>
</flag>
<flag name="F-shlW32M.lib" class="optimization" regexp="shlW32M.lib">
<example>shlW32M.lib</example>
<![CDATA[
<p>Link with MicroQuill SmartHeap Library (32-bit).<br>
Available from
<a href="http://www.microquill.com/">http://www.microquill.com/</a></p>
]]>
</flag>
<flag name="F-shlSMP64Mt.lib" class="optimization" regexp="shlSMP64Mt.lib">
<example>shlSMP64Mt.lib</example>
<![CDATA[
<p>Link with MicroQuill SmartHeap Library (64-bit).<br>
Available from
<a href="http://www.microquill.com/">http://www.microquill.com/</a></p>
]]>
</flag>
<flag name="F-bufferoverflowu.lib" class="optimization" regexp="bufferoverflowu.lib">
<example>bufferoverflowu.lib</example>
<![CDATA[
<p>Link with Microsoft Platform SDK bufferoverflowu.lib Library.</p>
]]>
</flag>
<!-- /OPTIMIZATION -->
<!-- PORTABILITY -->
<flag name="F-TP" class="portability" regexp="[/-]TP">
<example>-TP</example>
<![CDATA[
<p>-TP tells the compiler to process all source or unrecognized file types
as C++ source files.<br>
Default: The compiler assumes that files with the extension .c or .C
are C source files.
To handle them as C++ source files, the compiler flag -TP is needed.</p>
]]>
</flag>
<flag name="F-Qlowercase" class="portability">
<example>-Qlowercase</example>
<![CDATA[
<p>-Qlowercase causes the compiler to ignore case differences in identifiers
and to convert external names to lowercase.<br>
It is needed to specify the naming convention for mixing C and Fortran codes.</p>
]]>
</flag>
<flag name="F-assume:underscore" class="portability" regexp="[/-]assume:underscore">
<example>-assume:underscore</example>
<![CDATA[
<p><b>-assume:[no]underscore</b><br>
Determines whether the compiler appends an underscore character
to external user-defined names.<br>
-assume:underscore is needed to specify the naming convention
for mixing C and Fortran codes.</p>
]]>
</flag>
<flag name="F-D_Complex" class="portability" regexp="-D_Complex=">
<example>-D_Complex=</example>
<![CDATA[
Unset a buggy Macro in the current version of Microsoft Visual Studio 2005.
]]>
</flag>
<flag name="F-Qoption_no_wchar_t_keyword" class="portability" regexp="-Qoption,cpp,--no_wchar_t_keyword">
<example>-Qoption,cpp,--no_wchar_t_keyword</example>
<![CDATA[
<p>-Qoption,<i>string</i>,<i>options</i> This option
passes options to a specified tool.
</p>
<p><i>string</i> Is the name of the tool.<br>
Here: cpp indicates the C++ preprocessor.
</p>
<p><i>options</i> Are one or more comma-separated,
valid options for the designated tool.<br>
Here: --no_wchar_t_keyword is passed to C++ preprocessor to provide
the information that there is no wchar_t keyword.
</p>
<p>This flag must be used to avoid syntax errors coming from the use
of wchar_t in 483.xalancbmk.
</p>
]]>
</flag>
<!-- /PORTABILITY -->
<!-- COMPILER -->
<flag name="Ficl" class="compiler" regexp="icl">
<example>icl</example>
<![CDATA[
<p> Invoke Intel C/C++ compiler.<br>
Also used to invoke linker C/C++ programs.</p>
]]>
</flag>
<flag name="F-Qc99" class="compiler" regexp="[/-]Qc99-?">
<example>-Qc99</example>
<![CDATA[
<p>This option enables/disables C99 support for C programs.</p>
]]>
</flag>
<flag name="F-Qvc8" class="compiler">
<example>-Qvc8</example>
<![CDATA[
Specifies compatibilty with Microsoft Visual Studio 2005.
]]>
</flag>
<flag name="F-IntelLib_9_1" class="compiler"
regexp="-link -LIBPATH:\x22C:\\\\Program Files \(x86\)\\\\Intel\\\\Compiler\\\\C\+\+\\\\9.1\\\\EM64T\\\\Lib\x22">
<example>-link -LIBPATH:C:\Program Files (x86)\Intel\Compiler\C++\9.1\EM64T\Lib</example>
<![CDATA[
<p>Specify directories containing link libraries.</p>
<p>From Intel 9.1 for EM64T</p>
]]>
</flag>
<flag name="F-SDK_Lib" class="compiler"
regexp="-link -LIBPATH:\x22C:\\\\Program[ ]+Files\\\\Microsoft Platform SDK\\\\Lib\\\\AMD64\x22">
<example>-link -LIBPATH:C:\Program Files\Microsoft Platform SDK\Lib\AMD64</example>
<![CDATA[
<p>Specify directories containing link libraries.</p>
<p>From Microsoft Platform SDK for AMD64</p>
]]>
</flag>
<flag name="F-SDK_Lib_atl" class="compiler"
regexp="-link -LIBPATH:\x22C:\\\\Program[ ]+Files\\\\Microsoft Platform SDK\\\\Lib\\\\AMD64\\\\atlmfc\x22">
<example>-link -LIBPATH:C:\Program Files\Microsoft Platform SDK\Lib\AMD64\atlmfc</example>
<![CDATA[
<p>Specify directories containing link libraries.</p>
<p>From Microsoft Platform SDK for AMD64 - ATLMFC library</p>
]]>
</flag>
<flag name="F-splitlink" class="compiler"
regexp="-link -LIBPATH:(\x22[^\x22]+\x22) -(\S+)(?=\s|$)">
<include text="-link -LIBPATH:$1" />
<include text="-link -$2" />
<display enable="0" />
</flag>
<!-- /COMPILER -->
<!-- OTHER -->
<!-- currently there are no flags in the class "other" -->
<!-- /OTHER -->
</flagsdescription>
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。