代码拉取完成,页面将自动刷新
同步操作将从 布树辉/seqNet 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
import torch
import torch.utils.data as data
import itertools
import os
from os.path import join, exists
from scipy.io import loadmat, savemat
import numpy as np
from collections import namedtuple
from sklearn.neighbors import NearestNeighbors
import faiss
import h5py
dbStruct = namedtuple('dbStruct', ['whichSet', 'dataset',
'dbImage', 'utmDb', 'qImage', 'utmQ', 'numDb', 'numQ',
'posDistThr', 'posDistSqThr', 'nonTrivPosDistSqThr',
'dbTimeStamp', 'qTimeStamp', 'gpsDb', 'gpsQ'])
class Dataset():
def __init__(self, dataset_name, train_mat_file, test_mat_file, val_mat_file, opt):
self.dataset_name = dataset_name
self.train_mat_file = train_mat_file
self.test_mat_file = test_mat_file
self.val_mat_file = val_mat_file
self.struct_dir = "./structFiles/"
self.seqL = opt.seqL
self.seqL_filterData = opt.seqL_filterData
# descriptor settings
self.dbDescs = None
self.qDescs = None
self.trainInds = None
self.valInds = None
self.testInds = None
self.db_seqBounds = None
self.q_seqBounds = None
def loadPreComputedDescriptors(self,ft1,ft2,seqBounds=None):
self.dbDescs = ft1
self.qDescs = ft2
print("All Db descs: ", self.dbDescs.shape)
print("All Qry descs: ", self.qDescs.shape)
if seqBounds is None:
self.db_seqBounds = None
self.q_seqBounds = None
else:
self.db_seqBounds = seqBounds[0]
self.q_seqBounds = seqBounds[1]
return self.dbDescs.shape[1]
def get_whole_training_set(self, onlyDB=False):
structFile = join(self.struct_dir, self.train_mat_file)
indsSplit = self.trainInds
return WholeDatasetFromStruct( structFile, indsSplit, self.dbDescs, self.qDescs, seqL=self.seqL, onlyDB=onlyDB, seqBounds=[self.db_seqBounds,self.q_seqBounds],seqL_filterData=self.seqL_filterData)
def get_whole_val_set(self):
structFile = join(self.struct_dir, self.val_mat_file)
indsSplit = self.valInds
return WholeDatasetFromStruct(structFile, indsSplit, self.dbDescs, self.qDescs, seqL=self.seqL, seqBounds=[self.db_seqBounds,self.q_seqBounds],seqL_filterData=self.seqL_filterData)
def get_whole_test_set(self):
if self.test_mat_file is not None:
structFile = join(self.struct_dir, self.test_mat_file)
indsSplit = self.testInds
return WholeDatasetFromStruct(structFile, indsSplit, self.dbDescs, self.qDescs, seqL=self.seqL, seqBounds=[self.db_seqBounds,self.q_seqBounds],seqL_filterData=self.seqL_filterData)
else:
raise ValueError('test set not available for dataset ' + self.dataset_name)
def get_training_query_set(self, margin=0.1, nNegSample=1000, use_regions=False):
structFile = join(self.struct_dir, self.train_mat_file)
indsSplit = self.trainInds
return QueryDatasetFromStruct(structFile,indsSplit, self.dbDescs, self.qDescs, nNegSample=nNegSample, margin=margin,use_regions=use_regions, seqL=self.seqL, seqBounds=[self.db_seqBounds,self.q_seqBounds])
def get_val_query_set(self):
structFile = join(self.struct_dir, self.val_mat_file)
indsSplit = self.valInds
return QueryDatasetFromStruct(structFile, indsSplit, self.dbDescs, self.qDescs, seqL=self.seqL, seqBounds=[self.db_seqBounds,self.q_seqBounds])
@staticmethod
def collate_fn(batch):
"""Creates mini-batch tensors from the list of tuples (query, positive, negatives).
Args:
batch: list of tuple (query, positive, negatives).
- query: torch tensor of shape (T, C). e.g. (5,4096)
- positive: torch tensor of shape (T, C).
- negative: torch tensor of shape (N, T, C).
Returns:
query: torch tensor of shape (batch_size, T, C).
positive: torch tensor of shape (batch_size, T, C).
negatives: torch tensor of shape (batch_size, T, C).
"""
batch = list(filter(lambda x: x is not None, batch))
if len(batch) == 0:
return None, None, None, None, None
query, positive, negatives, indices = zip(*batch)
query = data.dataloader.default_collate(query)
positive = data.dataloader.default_collate(positive)
negCounts = data.dataloader.default_collate([x.shape[0] for x in negatives])
negatives = torch.cat(negatives, 0)
indices = list(itertools.chain(*indices))
return query, positive, negatives, negCounts, indices
def getSeqInds(idx,seqL,maxNum,minNum=0,retLenDiff=False):
seqLOrig = seqL
seqInds = np.arange(max(minNum,idx-seqL//2),min(idx+seqL-seqL//2,maxNum),1)
lenDiff = seqLOrig - len(seqInds)
if retLenDiff:
return lenDiff
if seqInds[0] == minNum:
seqInds = np.concatenate([seqInds,np.arange(seqInds[-1]+1,seqInds[-1]+1+lenDiff,1)])
elif lenDiff > 0 and seqInds[-1] in range(maxNum-1,maxNum):
seqInds = np.concatenate([np.arange(seqInds[0]-lenDiff,seqInds[0],1),seqInds])
return seqInds
def getValidSeqInds(seqBounds,seqL):
validFlags = []
for i in range(len(seqBounds)):
sIdMin, sIdMax = seqBounds[i]
lenDiff = getSeqInds(i,seqL,sIdMax,minNum=sIdMin,retLenDiff=True)
validFlags.append(True if lenDiff == 0 else False)
return validFlags
def parse_db_struct(path):
mat = loadmat(path)
fieldnames = list(mat['dbStruct'][0, 0].dtype.names)
dataset = mat['dbStruct'][0, 0]['dataset'].item()
whichSet = mat['dbStruct'][0, 0]['whichSet'].item()
dbImage = [f[0].item() for f in mat['dbStruct'][0, 0]['dbImageFns']]
qImage = [f[0].item() for f in mat['dbStruct'][0, 0]['qImageFns']]
numDb = mat['dbStruct'][0, 0]['numImages'].item()
numQ = mat['dbStruct'][0, 0]['numQueries'].item()
posDistThr = mat['dbStruct'][0, 0]['posDistThr'].item()
posDistSqThr = mat['dbStruct'][0, 0]['posDistSqThr'].item()
if 'nonTrivPosDistSqThr' in fieldnames:
nonTrivPosDistSqThr = mat['dbStruct'][0, 0]['nonTrivPosDistSqThr'].item()
else:
nonTrivPosDistSqThr = None
if 'dbTimeStamp' in fieldnames and 'qTimeStamp' in fieldnames:
dbTimeStamp = [f[0].item() for f in mat['dbStruct'][0, 0]['dbTimeStamp'].T]
qTimeStamp = [f[0].item() for f in mat['dbStruct'][0, 0]['qTimeStamp'].T]
dbTimeStamp = np.array(dbTimeStamp)
qTimeStamp = np.array(qTimeStamp)
else:
dbTimeStamp = None
qTimeStamp = None
if 'utmQ' in fieldnames and 'utmDb' in fieldnames:
utmDb = mat['dbStruct'][0, 0]['utmDb'].T
utmQ = mat['dbStruct'][0, 0]['utmQ'].T
else:
utmQ = None
utmDb = None
if 'gpsQ' in fieldnames and 'gpsDb' in fieldnames:
gpsDb = mat['dbStruct'][0, 0]['gpsDb'].T
gpsQ = mat['dbStruct'][0, 0]['gpsQ'].T
else:
gpsQ = None
gpsDb = None
return dbStruct(whichSet, dataset, dbImage, utmDb, qImage, utmQ, numDb, numQ, posDistThr,
posDistSqThr, nonTrivPosDistSqThr, dbTimeStamp, qTimeStamp, gpsQ, gpsDb)
def save_db_struct(path, db_struct):
assert db_struct.numDb == len(db_struct.dbImage)
assert db_struct.numQ == len(db_struct.qImage)
inner_dict = {
'whichSet': db_struct.whichSet,
'dbImageFns': np.array(db_struct.dbImage, dtype=np.object).reshape(-1, 1),
'qImageFns': np.array(db_struct.qImage, dtype=np.object).reshape(-1, 1),
'numImages': db_struct.numDb,
'numQueries': db_struct.numQ,
'posDistThr': db_struct.posDistThr,
'posDistSqThr': db_struct.posDistSqThr,
}
if db_struct.dataset is not None:
inner_dict['dataset'] = db_struct.dataset
if db_struct.nonTrivPosDistSqThr is not None:
inner_dict['nonTrivPosDistSqThr'] = db_struct.nonTrivPosDistSqThr
if db_struct.utmDb is not None and db_struct.utmQ is not None:
assert db_struct.numDb == len(db_struct.utmDb)
assert db_struct.numQ == len(db_struct.utmQ)
inner_dict['utmDb'] = db_struct.utmDb.T
inner_dict['utmQ'] = db_struct.utmQ.T
if db_struct.gpsDb is not None and db_struct.gpsQ is not None:
assert db_struct.numDb == len(db_struct.gpsDb)
assert db_struct.numQ == len(db_struct.gpsQ)
inner_dict['gpsDb'] = db_struct.gpsDb.T
inner_dict['gpsQ'] = db_struct.gpsQ.T
if db_struct.dbTimeStamp is not None and db_struct.qTimeStamp is not None:
inner_dict['dbTimeStamp'] = db_struct.dbTimeStamp.astype(np.float64)
inner_dict['qTimeStamp'] = db_struct.qTimeStamp.astype(np.float64)
savemat(path, {'dbStruct': inner_dict})
class WholeDatasetFromStruct(data.Dataset):
def __init__(self, structFile, indsSplit, dbDescs, qDescs, onlyDB=False, seqL=1, seqBounds=None,seqL_filterData=None):
super().__init__()
self.seqL = seqL
self.filterBoundaryInds = False if seqL_filterData is None else True
self.dbStruct = parse_db_struct(structFile)
self.images = dbDescs[indsSplit[0]]
if seqBounds[0] is None:
self.seqBounds = np.array([[0,len(self.images)] for _ in range(len(self.images))])
if not onlyDB:
qImages = qDescs[indsSplit[1]]
self.images = np.concatenate([self.images,qImages],0)
if seqBounds[0] is None:
q_seqBounds = np.array([[len(self.seqBounds),len(self.images)] for _ in range(len(qImages))])
self.seqBounds = np.vstack([self.seqBounds,q_seqBounds])
if seqBounds[0] is not None:
db_seqBounds = seqBounds[0][indsSplit[0]]
q_seqBounds = db_seqBounds[-1,-1] + seqBounds[1][indsSplit[1]]
self.seqBounds = np.vstack([db_seqBounds,q_seqBounds])
self.validInds = np.arange(len(self.images))
self.validInds_db = np.arange(self.dbStruct.numDb)
self.validInds_q = np.arange(self.dbStruct.numQ)
if self.filterBoundaryInds:
validFlags = getValidSeqInds(self.seqBounds,seqL_filterData)
self.validInds = np.argwhere(validFlags).flatten()
self.validInds_db = np.argwhere(validFlags[:self.dbStruct.numDb]).flatten()
self.validInds_q = np.argwhere(validFlags[self.dbStruct.numDb:]).flatten()
self.dbStruct = self.dbStruct._replace(utmDb=self.dbStruct.utmDb[self.validInds_db], numDb=len(self.validInds_db), utmQ=self.dbStruct.utmQ[self.validInds_q], numQ=len(self.validInds_q))
self.whichSet = self.dbStruct.whichSet
self.dataset = self.dbStruct.dataset
self.positives = None
self.distances = None
def __getitem__(self, index):
origIndex = index
index = self.validInds[index]
sIdMin, sIdMax = self.seqBounds[index]
img = self.images[getSeqInds(index,self.seqL,sIdMax,minNum=sIdMin)]
return img, origIndex
def __len__(self):
return len(self.validInds)
def get_positives(self,retDists=False):
# positives for evaluation are those within trivial threshold range
# fit NN to find them, search by radius
if self.positives is None:
knn = NearestNeighbors(n_jobs=-1)
knn.fit(self.dbStruct.utmDb)
print("Using Localization Radius: ", self.dbStruct.posDistThr)
self.distances, self.positives = knn.radius_neighbors(self.dbStruct.utmQ, radius=self.dbStruct.posDistThr)
if retDists:
return self.positives, self.distances
else:
return self.positives
class QueryDatasetFromStruct(data.Dataset):
def __init__(self, structFile, indsSplit, dbDescs, qDescs, nNegSample=1000, nNeg=10, margin=0.1, use_regions=False, seqL=1, seqBounds=None):
super().__init__()
self.seqL = seqL
self.dbDescs = dbDescs[indsSplit[0]]
self.qDescs = qDescs[indsSplit[1]]
self.margin = margin
self.dbStruct = parse_db_struct(structFile)
if seqBounds[0] is None:
self.db_seqBounds = np.array([[0,len(self.dbDescs)] for _ in range(len(self.dbDescs))])
self.q_seqBounds = np.array([[0,len(self.qDescs)] for _ in range(len(self.qDescs))])
else:
self.db_seqBounds = seqBounds[0][indsSplit[0]]
self.q_seqBounds = seqBounds[1][indsSplit[1]]
self.whichSet = self.dbStruct.whichSet
self.dataset = self.dbStruct.dataset
self.nNegSample = nNegSample # number of negatives to randomly sample
self.nNeg = nNeg # number of negatives used for training
self.use_faiss = True
self.use_regions = use_regions
# potential positives are those within nontrivial threshold range
# fit NN to find them, search by radius
knn = NearestNeighbors(n_jobs=-1)
knn.fit(self.dbStruct.utmDb)
# TODO use sqeuclidean as metric?
self.nontrivial_distances, self.nontrivial_positives = \
knn.radius_neighbors(self.dbStruct.utmQ, radius=self.dbStruct.nonTrivPosDistSqThr**0.5,
return_distance=True)
self.nontrivial_positives = list(self.nontrivial_positives)
# radius returns unsorted, sort once now so we dont have to later
for i, posi in enumerate(self.nontrivial_positives):
self.nontrivial_positives[i] = np.sort(posi)
# its possible some queries don't have any non trivial potential positives
# lets filter those out
self.queries = np.where(np.array([len(x) for x in self.nontrivial_positives]) > 0)[0]
print("\n Queries within range ",len(self.queries), len(self.nontrivial_positives),"\n")
# potential negatives are those outside of posDistThr range
potential_positives = knn.radius_neighbors(self.dbStruct.utmQ,
radius=self.dbStruct.posDistThr,
return_distance=False)
self.potential_negatives = []
for pos in potential_positives:
self.potential_negatives.append(np.setdiff1d(np.arange(self.dbStruct.numDb), pos, assume_unique=True))
self.cache = None # filepath of HDF5 containing feature vectors for images
self.h5feat = None
self.negCache = [np.empty((0,)) for _ in range(self.dbStruct.numQ)]
def __getitem__(self, index):
with h5py.File(self.cache, mode='r') as h5:
h5feat = h5.get("features")
qOffset = self.dbStruct.numDb
qFeat = h5feat[index + qOffset]
posFeat = h5feat[self.nontrivial_positives[index].tolist()]
if self.use_faiss:
faiss_index = faiss.IndexFlatL2(posFeat.shape[1])
# noinspection PyArgumentList
faiss_index.add(posFeat)
# noinspection PyArgumentList
dPos, posNN = faiss_index.search(qFeat.reshape(1, -1), 1)#posFeat.shape[0])
dPos = np.sqrt(dPos) # faiss returns squared distance
else:
knn = NearestNeighbors(n_jobs=-1)
knn.fit(posFeat)
dPos, posNN = knn.kneighbors(qFeat.reshape(1, -1), 1)#posFeat.shape[0])
if len(self.nontrivial_positives[index]) < 1:
# if none are violating then skip this query
return None
dPos = dPos[0][-1].item()
posIndex = self.nontrivial_positives[index][posNN[0,-1]].item()
negSample = np.random.choice(self.potential_negatives[index], self.nNegSample)
negSample = np.unique(np.concatenate([self.negCache[index], negSample]))
negSample = np.sort(negSample) #essential to order ascending, speeds up h5 by about double
negFeat = h5feat[negSample.astype(int).tolist()]
if self.use_faiss:
faiss_index = faiss.IndexFlatL2(posFeat.shape[1])
# noinspection PyArgumentList
faiss_index.add(negFeat)
# noinspection PyArgumentList
dNeg, negNN = faiss_index.search(qFeat.reshape(1, -1), self.nNeg * 10)
dNeg = np.sqrt(dNeg)
else:
knn.fit(negFeat)
# to quote netvlad paper code: 10x is hacky but fine
dNeg, negNN = knn.kneighbors(qFeat.reshape(1, -1), self.nNeg * 10)
dNeg = dNeg.reshape(-1)
negNN = negNN.reshape(-1)
# try to find negatives that are within margin, if there aren't any return none
violatingNeg = dNeg < dPos + self.margin**0.5
if np.sum(violatingNeg) < 1:
# if none are violating then skip this query
return None
negNN = negNN[violatingNeg][:self.nNeg]
negIndices = negSample[negNN].astype(np.int32)
self.negCache[index] = negIndices
sIdMin_q, sIdMax_q = self.q_seqBounds[index]
query = self.qDescs[getSeqInds(index,self.seqL,sIdMax_q,sIdMin_q)]
sIdMin_p, sIdMax_p = self.db_seqBounds[posIndex]
positive = self.dbDescs[getSeqInds(posIndex,self.seqL,sIdMax_p,sIdMin_p)]
negatives = []
for negIndex in negIndices:
sIdMin_n, sIdMax_n = self.db_seqBounds[negIndex]
negative = torch.tensor(self.dbDescs[getSeqInds(negIndex,self.seqL,sIdMax_n,sIdMin_n)])
negatives.append(negative)
negatives = torch.stack(negatives, 0)
# noinspection PyTypeChecker
return query, positive, negatives, [index, posIndex] + negIndices.tolist()
def __len__(self):
return len(self.qDescs)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。