1 Star 0 Fork 7

星尘/Tacotron

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
train.py 6.11 KB
一键复制 编辑 原始数据 按行查看 历史
Keith Ito 提交于 2017-09-04 20:47 . Use single quotes
import argparse
from datetime import datetime
import math
import numpy as np
import os
import subprocess
import time
import tensorflow as tf
import traceback
from datasets.datafeeder import DataFeeder
from hparams import hparams, hparams_debug_string
from models import create_model
from text import sequence_to_text
from util import audio, infolog, plot, ValueWindow
log = infolog.log
def get_git_commit():
subprocess.check_output(['git', 'diff-index', '--quiet', 'HEAD']) # Verify client is clean
commit = subprocess.check_output(['git', 'rev-parse', 'HEAD']).decode().strip()[:10]
log('Git commit: %s' % commit)
return commit
def add_stats(model):
with tf.variable_scope('stats') as scope:
tf.summary.histogram('linear_outputs', model.linear_outputs)
tf.summary.histogram('linear_targets', model.linear_targets)
tf.summary.histogram('mel_outputs', model.mel_outputs)
tf.summary.histogram('mel_targets', model.mel_targets)
tf.summary.scalar('loss_mel', model.mel_loss)
tf.summary.scalar('loss_linear', model.linear_loss)
tf.summary.scalar('learning_rate', model.learning_rate)
tf.summary.scalar('loss', model.loss)
gradient_norms = [tf.norm(grad) for grad in model.gradients]
tf.summary.histogram('gradient_norm', gradient_norms)
tf.summary.scalar('max_gradient_norm', tf.reduce_max(gradient_norms))
return tf.summary.merge_all()
def time_string():
return datetime.now().strftime('%Y-%m-%d %H:%M')
def train(log_dir, args):
commit = get_git_commit() if args.git else 'None'
checkpoint_path = os.path.join(log_dir, 'model.ckpt')
input_path = os.path.join(args.base_dir, args.input)
log('Checkpoint path: %s' % checkpoint_path)
log('Loading training data from: %s' % input_path)
log('Using model: %s' % args.model)
log(hparams_debug_string())
# Set up DataFeeder:
coord = tf.train.Coordinator()
with tf.variable_scope('datafeeder') as scope:
feeder = DataFeeder(coord, input_path, hparams)
# Set up model:
global_step = tf.Variable(0, name='global_step', trainable=False)
with tf.variable_scope('model') as scope:
model = create_model(args.model, hparams)
model.initialize(feeder.inputs, feeder.input_lengths, feeder.mel_targets, feeder.linear_targets)
model.add_loss()
model.add_optimizer(global_step)
stats = add_stats(model)
# Bookkeeping:
step = 0
time_window = ValueWindow(100)
loss_window = ValueWindow(100)
saver = tf.train.Saver(max_to_keep=5, keep_checkpoint_every_n_hours=2)
# Train!
with tf.Session() as sess:
try:
summary_writer = tf.summary.FileWriter(log_dir, sess.graph)
sess.run(tf.global_variables_initializer())
if args.restore_step:
# Restore from a checkpoint if the user requested it.
restore_path = '%s-%d' % (checkpoint_path, args.restore_step)
saver.restore(sess, restore_path)
log('Resuming from checkpoint: %s at commit: %s' % (restore_path, commit), slack=True)
else:
log('Starting new training run at commit: %s' % commit, slack=True)
feeder.start_in_session(sess)
while not coord.should_stop():
start_time = time.time()
step, loss, opt = sess.run([global_step, model.loss, model.optimize])
time_window.append(time.time() - start_time)
loss_window.append(loss)
message = 'Step %-7d [%.03f sec/step, loss=%.05f, avg_loss=%.05f]' % (
step, time_window.average, loss, loss_window.average)
log(message, slack=(step % args.checkpoint_interval == 0))
if loss > 100 or math.isnan(loss):
log('Loss exploded to %.05f at step %d!' % (loss, step), slack=True)
raise Exception('Loss Exploded')
if step % args.summary_interval == 0:
log('Writing summary at step: %d' % step)
summary_writer.add_summary(sess.run(stats), step)
if step % args.checkpoint_interval == 0:
log('Saving checkpoint to: %s-%d' % (checkpoint_path, step))
saver.save(sess, checkpoint_path, global_step=step)
log('Saving audio and alignment...')
input_seq, spectrogram, alignment = sess.run([
model.inputs[0], model.linear_outputs[0], model.alignments[0]])
waveform = audio.inv_spectrogram(spectrogram.T)
audio.save_wav(waveform, os.path.join(log_dir, 'step-%d-audio.wav' % step))
plot.plot_alignment(alignment, os.path.join(log_dir, 'step-%d-align.png' % step),
info='%s, %s, %s, step=%d, loss=%.5f' % (args.model, commit, time_string(), step, loss))
log('Input: %s' % sequence_to_text(input_seq))
except Exception as e:
log('Exiting due to exception: %s' % e, slack=True)
traceback.print_exc()
coord.request_stop(e)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--base_dir', default=os.path.expanduser('~/tacotron'))
parser.add_argument('--input', default='training/train.txt')
parser.add_argument('--model', default='tacotron')
parser.add_argument('--name', help='Name of the run. Used for logging. Defaults to model name.')
parser.add_argument('--hparams', default='',
help='Hyperparameter overrides as a comma-separated list of name=value pairs')
parser.add_argument('--restore_step', type=int, help='Global step to restore from checkpoint.')
parser.add_argument('--summary_interval', type=int, default=100,
help='Steps between running summary ops.')
parser.add_argument('--checkpoint_interval', type=int, default=1000,
help='Steps between writing checkpoints.')
parser.add_argument('--slack_url', help='Slack webhook URL to get periodic reports.')
parser.add_argument('--tf_log_level', type=int, default=1, help='Tensorflow C++ log level.')
parser.add_argument('--git', action='store_true', help='If set, verify that the client is clean.')
args = parser.parse_args()
os.environ['TF_CPP_MIN_LOG_LEVEL'] = str(args.tf_log_level)
run_name = args.name or args.model
log_dir = os.path.join(args.base_dir, 'logs-%s' % run_name)
os.makedirs(log_dir, exist_ok=True)
infolog.init(os.path.join(log_dir, 'train.log'), run_name, args.slack_url)
hparams.parse(args.hparams)
train(log_dir, args)
if __name__ == '__main__':
main()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/xingchensoft/Tacotron.git
[email protected]:xingchensoft/Tacotron.git
xingchensoft
Tacotron
Tacotron
master

搜索帮助