代码拉取完成,页面将自动刷新
同步操作将从 qieangel2013/phpml 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
<?php
require_once 'vendor/autoload.php';
use Phpml\Regression\LeastSquares;
use Phpml\Regression\SVR;
/*
我们现在对一支股票进行预测
张氏股从2010年开始
2010年单股价123.5$
2011年单股价124.5$
2012年单股价134.5$
2013年单股价144$
2014年单股价144.7$
2015年单股价154.5$
2016年单股价184.5$
我们根据每年的股价涨势计算出
2010年 涨1.1%
2011年 涨1.2%
2012年 涨2.1%
2013年 涨3.1%
2014年 涨3.3%
2015年 涨4.1%
2016年 涨5.1%
*/
/*将上面的数据放入$samples数组里
*/
$samples = [[2010], [2011], [2012], [2013], [2014], [2015],[2016]];
/*
在labels中存入每年的股价涨势
*/
$labels = [1.1, 1.2, 2.1, 3.1, 3.3, 4.1,5.1];
/*
下面我们采用最小二乘法逼近线性模型进行预测
*/
$regression = new LeastSquares();
/*
下面我们采用libsvm的向量回归进行预测
*/
$regression = new SVR(Kernel::LINEAR);
/* 对其进行训练 */
$regression->train($samples, $labels);
/*
如果我们想知道2017年张氏股的涨势是什么样的,我们用最小二乘法逼近线性模型来进行预测
*/
print_r($regression->predict([2017]));
// return 5.53667
/*
我们预测的结果是涨势5.53%
该实例采用回归的最小二乘法算法和向量回归来进行预测的
*/
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。