1 Star 0 Fork 0

sik/yolov5

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
val.py 29.71 KB
一键复制 编辑 原始数据 按行查看 历史
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
"""
Validate a trained YOLOv5 detection model on a detection dataset.
Usage:
$ python val.py --weights yolov5s.pt --data coco128.yaml --img 640
Usage - formats:
$ python val.py --weights yolov5s.pt # PyTorch
yolov5s.torchscript # TorchScript
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s_openvino_model # OpenVINO
yolov5s.engine # TensorRT
yolov5s.mlpackage # CoreML (macOS-only)
yolov5s_saved_model # TensorFlow SavedModel
yolov5s.pb # TensorFlow GraphDef
yolov5s.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
yolov5s_paddle_model # PaddlePaddle
"""
import argparse
import json
import os
import subprocess
import sys
from pathlib import Path
import numpy as np
import torch
from tqdm import tqdm
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.common import DetectMultiBackend
from utils.callbacks import Callbacks
from utils.dataloaders import create_dataloader
from utils.general import (
LOGGER,
TQDM_BAR_FORMAT,
Profile,
check_dataset,
check_img_size,
check_requirements,
check_yaml,
coco80_to_coco91_class,
colorstr,
increment_path,
non_max_suppression,
print_args,
scale_boxes,
xywh2xyxy,
xyxy2xywh,
)
from utils.metrics import ConfusionMatrix, ap_per_class, box_iou
from utils.plots import output_to_target, plot_images, plot_val_study
from utils.torch_utils import select_device, smart_inference_mode
def save_one_txt(predn, save_conf, shape, file):
"""
Saves one detection result to a txt file in normalized xywh format, optionally including confidence.
Args:
predn (torch.Tensor): Predicted bounding boxes and associated confidence scores and classes in xyxy format, tensor
of shape (N, 6) where N is the number of detections.
save_conf (bool): If True, saves the confidence scores along with the bounding box coordinates.
shape (tuple): Shape of the original image as (height, width).
file (str | Path): File path where the result will be saved.
Returns:
None
Notes:
The xyxy bounding box format represents the coordinates (xmin, ymin, xmax, ymax).
The xywh format represents the coordinates (center_x, center_y, width, height) and is normalized by the width and
height of the image.
Example:
```python
predn = torch.tensor([[10, 20, 30, 40, 0.9, 1]]) # example prediction
save_one_txt(predn, save_conf=True, shape=(640, 480), file="output.txt")
```
"""
gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
for *xyxy, conf, cls in predn.tolist():
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
with open(file, "a") as f:
f.write(("%g " * len(line)).rstrip() % line + "\n")
def save_one_json(predn, jdict, path, class_map):
"""
Saves a single JSON detection result, including image ID, category ID, bounding box, and confidence score.
Args:
predn (torch.Tensor): Predicted detections in xyxy format with shape (n, 6) where n is the number of detections.
The tensor should contain [x_min, y_min, x_max, y_max, confidence, class_id] for each detection.
jdict (list[dict]): List to collect JSON formatted detection results.
path (pathlib.Path): Path object of the image file, used to extract image_id.
class_map (dict[int, int]): Mapping from model class indices to dataset-specific category IDs.
Returns:
None: Appends detection results as dictionaries to `jdict` list in-place.
Example:
```python
predn = torch.tensor([[100, 50, 200, 150, 0.9, 0], [50, 30, 100, 80, 0.8, 1]])
jdict = []
path = Path("42.jpg")
class_map = {0: 18, 1: 19}
save_one_json(predn, jdict, path, class_map)
```
This will append to `jdict`:
```
[
{'image_id': 42, 'category_id': 18, 'bbox': [125.0, 75.0, 100.0, 100.0], 'score': 0.9},
{'image_id': 42, 'category_id': 19, 'bbox': [75.0, 55.0, 50.0, 50.0], 'score': 0.8}
]
```
Notes:
The `bbox` values are formatted as [x, y, width, height], where x and y represent the top-left corner of the box.
"""
image_id = int(path.stem) if path.stem.isnumeric() else path.stem
box = xyxy2xywh(predn[:, :4]) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
for p, b in zip(predn.tolist(), box.tolist()):
jdict.append(
{
"image_id": image_id,
"category_id": class_map[int(p[5])],
"bbox": [round(x, 3) for x in b],
"score": round(p[4], 5),
}
)
def process_batch(detections, labels, iouv):
"""
Return a correct prediction matrix given detections and labels at various IoU thresholds.
Args:
detections (np.ndarray): Array of shape (N, 6) where each row corresponds to a detection with format
[x1, y1, x2, y2, conf, class].
labels (np.ndarray): Array of shape (M, 5) where each row corresponds to a ground truth label with format
[class, x1, y1, x2, y2].
iouv (np.ndarray): Array of IoU thresholds to evaluate at.
Returns:
correct (np.ndarray): A binary array of shape (N, len(iouv)) indicating whether each detection is a true positive
for each IoU threshold. There are 10 IoU levels used in the evaluation.
Example:
```python
detections = np.array([[50, 50, 200, 200, 0.9, 1], [30, 30, 150, 150, 0.7, 0]])
labels = np.array([[1, 50, 50, 200, 200]])
iouv = np.linspace(0.5, 0.95, 10)
correct = process_batch(detections, labels, iouv)
```
Notes:
- This function is used as part of the evaluation pipeline for object detection models.
- IoU (Intersection over Union) is a common evaluation metric for object detection performance.
"""
correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
iou = box_iou(labels[:, 1:], detections[:, :4])
correct_class = labels[:, 0:1] == detections[:, 5]
for i in range(len(iouv)):
x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match
if x[0].shape[0]:
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou]
if x[0].shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
# matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
correct[matches[:, 1].astype(int), i] = True
return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
@smart_inference_mode()
def run(
data,
weights=None, # model.pt path(s)
batch_size=32, # batch size
imgsz=640, # inference size (pixels)
conf_thres=0.001, # confidence threshold
iou_thres=0.6, # NMS IoU threshold
max_det=300, # maximum detections per image
task="val", # train, val, test, speed or study
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
workers=8, # max dataloader workers (per RANK in DDP mode)
single_cls=False, # treat as single-class dataset
augment=False, # augmented inference
verbose=False, # verbose output
save_txt=False, # save results to *.txt
save_hybrid=False, # save label+prediction hybrid results to *.txt
save_conf=False, # save confidences in --save-txt labels
save_json=False, # save a COCO-JSON results file
project=ROOT / "runs/val", # save to project/name
name="exp", # save to project/name
exist_ok=False, # existing project/name ok, do not increment
half=True, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
model=None,
dataloader=None,
save_dir=Path(""),
plots=True,
callbacks=Callbacks(),
compute_loss=None,
):
"""
Evaluates a YOLOv5 model on a dataset and logs performance metrics.
Args:
data (str | dict): Path to a dataset YAML file or a dataset dictionary.
weights (str | list[str], optional): Path to the model weights file(s). Supports various formats including PyTorch,
TorchScript, ONNX, OpenVINO, TensorRT, CoreML, TensorFlow SavedModel, TensorFlow GraphDef, TensorFlow Lite,
TensorFlow Edge TPU, and PaddlePaddle.
batch_size (int, optional): Batch size for inference. Default is 32.
imgsz (int, optional): Input image size (pixels). Default is 640.
conf_thres (float, optional): Confidence threshold for object detection. Default is 0.001.
iou_thres (float, optional): IoU threshold for Non-Maximum Suppression (NMS). Default is 0.6.
max_det (int, optional): Maximum number of detections per image. Default is 300.
task (str, optional): Task type - 'train', 'val', 'test', 'speed', or 'study'. Default is 'val'.
device (str, optional): Device to use for computation, e.g., '0' or '0,1,2,3' for CUDA or 'cpu' for CPU. Default is ''.
workers (int, optional): Number of dataloader workers. Default is 8.
single_cls (bool, optional): Treat dataset as a single class. Default is False.
augment (bool, optional): Enable augmented inference. Default is False.
verbose (bool, optional): Enable verbose output. Default is False.
save_txt (bool, optional): Save results to *.txt files. Default is False.
save_hybrid (bool, optional): Save label and prediction hybrid results to *.txt files. Default is False.
save_conf (bool, optional): Save confidences in --save-txt labels. Default is False.
save_json (bool, optional): Save a COCO-JSON results file. Default is False.
project (str | Path, optional): Directory to save results. Default is ROOT/'runs/val'.
name (str, optional): Name of the run. Default is 'exp'.
exist_ok (bool, optional): Overwrite existing project/name without incrementing. Default is False.
half (bool, optional): Use FP16 half-precision inference. Default is True.
dnn (bool, optional): Use OpenCV DNN for ONNX inference. Default is False.
model (torch.nn.Module, optional): Model object for training. Default is None.
dataloader (torch.utils.data.DataLoader, optional): Dataloader object. Default is None.
save_dir (Path, optional): Directory to save results. Default is Path('').
plots (bool, optional): Plot validation images and metrics. Default is True.
callbacks (utils.callbacks.Callbacks, optional): Callbacks for logging and monitoring. Default is Callbacks().
compute_loss (function, optional): Loss function for training. Default is None.
Returns:
dict: Contains performance metrics including precision, recall, mAP50, and mAP50-95.
"""
# Initialize/load model and set device
training = model is not None
if training: # called by train.py
device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
half &= device.type != "cpu" # half precision only supported on CUDA
model.half() if half else model.float()
else: # called directly
device = select_device(device, batch_size=batch_size)
# Directories
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
(save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Load model
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
imgsz = check_img_size(imgsz, s=stride) # check image size
half = model.fp16 # FP16 supported on limited backends with CUDA
if engine:
batch_size = model.batch_size
else:
device = model.device
if not (pt or jit):
batch_size = 1 # export.py models default to batch-size 1
LOGGER.info(f"Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models")
# Data
data = check_dataset(data) # check
# Configure
model.eval()
cuda = device.type != "cpu"
is_coco = isinstance(data.get("val"), str) and data["val"].endswith(f"coco{os.sep}val2017.txt") # COCO dataset
nc = 1 if single_cls else int(data["nc"]) # number of classes
iouv = torch.linspace(0.5, 0.95, 10, device=device) # iou vector for [email protected]:0.95
niou = iouv.numel()
# Dataloader
if not training:
if pt and not single_cls: # check --weights are trained on --data
ncm = model.model.nc
assert ncm == nc, (
f"{weights} ({ncm} classes) trained on different --data than what you passed ({nc} "
f"classes). Pass correct combination of --weights and --data that are trained together."
)
model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz)) # warmup
pad, rect = (0.0, False) if task == "speed" else (0.5, pt) # square inference for benchmarks
task = task if task in ("train", "val", "test") else "val" # path to train/val/test images
dataloader = create_dataloader(
data[task],
imgsz,
batch_size,
stride,
single_cls,
pad=pad,
rect=rect,
workers=workers,
prefix=colorstr(f"{task}: "),
)[0]
seen = 0
confusion_matrix = ConfusionMatrix(nc=nc)
names = model.names if hasattr(model, "names") else model.module.names # get class names
if isinstance(names, (list, tuple)): # old format
names = dict(enumerate(names))
class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
s = ("%22s" + "%11s" * 6) % ("Class", "Images", "Instances", "P", "R", "mAP50", "mAP50-95")
tp, fp, p, r, f1, mp, mr, map50, ap50, map = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
dt = Profile(device=device), Profile(device=device), Profile(device=device) # profiling times
loss = torch.zeros(3, device=device)
jdict, stats, ap, ap_class = [], [], [], []
callbacks.run("on_val_start")
pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT) # progress bar
for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
callbacks.run("on_val_batch_start")
with dt[0]:
if cuda:
im = im.to(device, non_blocking=True)
targets = targets.to(device)
im = im.half() if half else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
nb, _, height, width = im.shape # batch size, channels, height, width
# Inference
with dt[1]:
preds, train_out = model(im) if compute_loss else (model(im, augment=augment), None)
# Loss
if compute_loss:
loss += compute_loss(train_out, targets)[1] # box, obj, cls
# NMS
targets[:, 2:] *= torch.tensor((width, height, width, height), device=device) # to pixels
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
with dt[2]:
preds = non_max_suppression(
preds, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls, max_det=max_det
)
# Metrics
for si, pred in enumerate(preds):
labels = targets[targets[:, 0] == si, 1:]
nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions
path, shape = Path(paths[si]), shapes[si][0]
correct = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init
seen += 1
if npr == 0:
if nl:
stats.append((correct, *torch.zeros((2, 0), device=device), labels[:, 0]))
if plots:
confusion_matrix.process_batch(detections=None, labels=labels[:, 0])
continue
# Predictions
if single_cls:
pred[:, 5] = 0
predn = pred.clone()
scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
# Evaluate
if nl:
tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
correct = process_batch(predn, labelsn, iouv)
if plots:
confusion_matrix.process_batch(predn, labelsn)
stats.append((correct, pred[:, 4], pred[:, 5], labels[:, 0])) # (correct, conf, pcls, tcls)
# Save/log
if save_txt:
(save_dir / "labels").mkdir(parents=True, exist_ok=True)
save_one_txt(predn, save_conf, shape, file=save_dir / "labels" / f"{path.stem}.txt")
if save_json:
save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary
callbacks.run("on_val_image_end", pred, predn, path, names, im[si])
# Plot images
if plots and batch_i < 3:
plot_images(im, targets, paths, save_dir / f"val_batch{batch_i}_labels.jpg", names) # labels
plot_images(im, output_to_target(preds), paths, save_dir / f"val_batch{batch_i}_pred.jpg", names) # pred
callbacks.run("on_val_batch_end", batch_i, im, targets, paths, shapes, preds)
# Compute metrics
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)] # to numpy
if len(stats) and stats[0].any():
tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
ap50, ap = ap[:, 0], ap.mean(1) # [email protected], [email protected]:0.95
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
nt = np.bincount(stats[3].astype(int), minlength=nc) # number of targets per class
# Print results
pf = "%22s" + "%11i" * 2 + "%11.3g" * 4 # print format
LOGGER.info(pf % ("all", seen, nt.sum(), mp, mr, map50, map))
if nt.sum() == 0:
LOGGER.warning(f"WARNING ⚠️ no labels found in {task} set, can not compute metrics without labels")
# Print results per class
if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
for i, c in enumerate(ap_class):
LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
# Print speeds
t = tuple(x.t / seen * 1e3 for x in dt) # speeds per image
if not training:
shape = (batch_size, 3, imgsz, imgsz)
LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}" % t)
# Plots
if plots:
confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
callbacks.run("on_val_end", nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix)
# Save JSON
if save_json and len(jdict):
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else "" # weights
anno_json = str(Path("../datasets/coco/annotations/instances_val2017.json")) # annotations
if not os.path.exists(anno_json):
anno_json = os.path.join(data["path"], "annotations", "instances_val2017.json")
pred_json = str(save_dir / f"{w}_predictions.json") # predictions
LOGGER.info(f"\nEvaluating pycocotools mAP... saving {pred_json}...")
with open(pred_json, "w") as f:
json.dump(jdict, f)
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
check_requirements("pycocotools>=2.0.6")
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
anno = COCO(anno_json) # init annotations api
pred = anno.loadRes(pred_json) # init predictions api
eval = COCOeval(anno, pred, "bbox")
if is_coco:
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] # image IDs to evaluate
eval.evaluate()
eval.accumulate()
eval.summarize()
map, map50 = eval.stats[:2] # update results ([email protected]:0.95, [email protected])
except Exception as e:
LOGGER.info(f"pycocotools unable to run: {e}")
# Return results
model.float() # for training
if not training:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ""
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
maps = np.zeros(nc) + map
for i, c in enumerate(ap_class):
maps[c] = ap[i]
return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
def parse_opt():
"""
Parse command-line options for configuring YOLOv5 model inference.
Args:
data (str, optional): Path to the dataset YAML file. Default is 'data/coco128.yaml'.
weights (list[str], optional): List of paths to model weight files. Default is 'yolov5s.pt'.
batch_size (int, optional): Batch size for inference. Default is 32.
imgsz (int, optional): Inference image size in pixels. Default is 640.
conf_thres (float, optional): Confidence threshold for predictions. Default is 0.001.
iou_thres (float, optional): IoU threshold for Non-Max Suppression (NMS). Default is 0.6.
max_det (int, optional): Maximum number of detections per image. Default is 300.
task (str, optional): Task type - options are 'train', 'val', 'test', 'speed', or 'study'. Default is 'val'.
device (str, optional): Device to run the model on. e.g., '0' or '0,1,2,3' or 'cpu'. Default is empty to let the system choose automatically.
workers (int, optional): Maximum number of dataloader workers per rank in DDP mode. Default is 8.
single_cls (bool, optional): If set, treats the dataset as a single-class dataset. Default is False.
augment (bool, optional): If set, performs augmented inference. Default is False.
verbose (bool, optional): If set, reports mAP by class. Default is False.
save_txt (bool, optional): If set, saves results to *.txt files. Default is False.
save_hybrid (bool, optional): If set, saves label+prediction hybrid results to *.txt files. Default is False.
save_conf (bool, optional): If set, saves confidences in --save-txt labels. Default is False.
save_json (bool, optional): If set, saves results to a COCO-JSON file. Default is False.
project (str, optional): Project directory to save results to. Default is 'runs/val'.
name (str, optional): Name of the directory to save results to. Default is 'exp'.
exist_ok (bool, optional): If set, existing directory will not be incremented. Default is False.
half (bool, optional): If set, uses FP16 half-precision inference. Default is False.
dnn (bool, optional): If set, uses OpenCV DNN for ONNX inference. Default is False.
Returns:
argparse.Namespace: Parsed command-line options.
Notes:
- The '--data' parameter is checked to ensure it ends with 'coco.yaml' if '--save-json' is set.
- The '--save-txt' option is set to True if '--save-hybrid' is enabled.
- Args are printed using `print_args` to facilitate debugging.
Example:
To validate a trained YOLOv5 model on a COCO dataset:
```python
$ python val.py --weights yolov5s.pt --data coco128.yaml --img 640
```
Different model formats could be used instead of `yolov5s.pt`:
```python
$ python val.py --weights yolov5s.pt yolov5s.torchscript yolov5s.onnx yolov5s_openvino_model yolov5s.engine
```
Additional options include saving results in different formats, selecting devices, and more.
"""
parser = argparse.ArgumentParser()
parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path")
parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s.pt", help="model path(s)")
parser.add_argument("--batch-size", type=int, default=32, help="batch size")
parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="inference size (pixels)")
parser.add_argument("--conf-thres", type=float, default=0.001, help="confidence threshold")
parser.add_argument("--iou-thres", type=float, default=0.6, help="NMS IoU threshold")
parser.add_argument("--max-det", type=int, default=300, help="maximum detections per image")
parser.add_argument("--task", default="val", help="train, val, test, speed or study")
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)")
parser.add_argument("--single-cls", action="store_true", help="treat as single-class dataset")
parser.add_argument("--augment", action="store_true", help="augmented inference")
parser.add_argument("--verbose", action="store_true", help="report mAP by class")
parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")
parser.add_argument("--save-hybrid", action="store_true", help="save label+prediction hybrid results to *.txt")
parser.add_argument("--save-conf", action="store_true", help="save confidences in --save-txt labels")
parser.add_argument("--save-json", action="store_true", help="save a COCO-JSON results file")
parser.add_argument("--project", default=ROOT / "runs/val", help="save to project/name")
parser.add_argument("--name", default="exp", help="save to project/name")
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
opt = parser.parse_args()
opt.data = check_yaml(opt.data) # check YAML
opt.save_json |= opt.data.endswith("coco.yaml")
opt.save_txt |= opt.save_hybrid
print_args(vars(opt))
return opt
def main(opt):
"""
Executes YOLOv5 tasks like training, validation, testing, speed, and study benchmarks based on provided options.
Args:
opt (argparse.Namespace): Parsed command-line options.
This includes values for parameters like 'data', 'weights', 'batch_size', 'imgsz', 'conf_thres',
'iou_thres', 'max_det', 'task', 'device', 'workers', 'single_cls', 'augment', 'verbose', 'save_txt',
'save_hybrid', 'save_conf', 'save_json', 'project', 'name', 'exist_ok', 'half', and 'dnn', essential
for configuring the YOLOv5 tasks.
Returns:
None
Examples:
To validate a trained YOLOv5 model on the COCO dataset with a specific weights file, use:
```python
$ python val.py --weights yolov5s.pt --data coco128.yaml --img 640
```
"""
check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
if opt.task in ("train", "val", "test"): # run normally
if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466
LOGGER.info(f"WARNING ⚠️ confidence threshold {opt.conf_thres} > 0.001 produces invalid results")
if opt.save_hybrid:
LOGGER.info("WARNING ⚠️ --save-hybrid will return high mAP from hybrid labels, not from predictions alone")
run(**vars(opt))
else:
weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
opt.half = torch.cuda.is_available() and opt.device != "cpu" # FP16 for fastest results
if opt.task == "speed": # speed benchmarks
# python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt...
opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
for opt.weights in weights:
run(**vars(opt), plots=False)
elif opt.task == "study": # speed vs mAP benchmarks
# python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt...
for opt.weights in weights:
f = f"study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt" # filename to save to
x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis
for opt.imgsz in x: # img-size
LOGGER.info(f"\nRunning {f} --imgsz {opt.imgsz}...")
r, _, t = run(**vars(opt), plots=False)
y.append(r + t) # results and times
np.savetxt(f, y, fmt="%10.4g") # save
subprocess.run(["zip", "-r", "study.zip", "study_*.txt"])
plot_val_study(x=x) # plot
else:
raise NotImplementedError(f'--task {opt.task} not in ("train", "val", "test", "speed", "study")')
if __name__ == "__main__":
opt = parse_opt()
main(opt)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/tinysik/yolov5.git
[email protected]:tinysik/yolov5.git
tinysik
yolov5
yolov5
master

搜索帮助