1 Star 0 Fork 0

超腾开源/go-three-math

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
triangle.go 6.40 KB
一键复制 编辑 原始数据 按行查看 历史
超腾开源 提交于 2020-08-30 19:49 . source code
// Copyright 2017-2020 The ShadowEditor Authors. All rights reserved.
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file.
//
// For more information, please visit: https://github.com/tengge1/ShadowEditor
// You can also visit: https://gitee.com/tengge1/ShadowEditor
//
// This package is translated from three.js, visit `https://github.com/mrdoob/three.js`
// for more information.
package three
import "math"
var _v0Triangle = Vector3{}
var _v1Triangle = Vector3{}
var _v2Triangle = Vector3{}
var _v3 = Vector3{}
var _vab = Vector3{}
var _vac = Vector3{}
var _vbc = Vector3{}
var _vap = Vector3{}
var _vbp = Vector3{}
var _vcp = Vector3{}
// NewTriangle :
func NewTriangle(a, b, c Vector3) *Triangle {
return &Triangle{a, b, c}
}
// Triangle :
type Triangle struct {
A Vector3
B Vector3
C Vector3
}
// GetNormal :
func GetNormal(a, b, c, target Vector3) *Vector3 {
target.SubVectors(c, b)
_v0Triangle.SubVectors(a, b)
target.Cross(_v0Triangle)
targetLengthSq := target.LengthSq()
if targetLengthSq > 0 {
return target.MultiplyScalar(1 / math.Sqrt(targetLengthSq))
}
return target.Set(0, 0, 0)
}
// GetBarycoord :
// static/instance method to calculate barycentric coordinates
// based on: http://www.blackpawn.com/texts/pointinpoly/default.html
func GetBarycoord(point, a, b, c, target Vector3) *Vector3 {
_v0Triangle.SubVectors(c, a)
_v1Triangle.SubVectors(b, a)
_v2Triangle.SubVectors(point, a)
dot00 := _v0Triangle.Dot(_v0Triangle)
dot01 := _v0Triangle.Dot(_v1Triangle)
dot02 := _v0Triangle.Dot(_v2Triangle)
dot11 := _v1Triangle.Dot(_v1Triangle)
dot12 := _v1Triangle.Dot(_v2Triangle)
denom := dot00*dot11 - dot01*dot01
// collinear or singular triangle
if denom == 0 {
// arbitrary location outside of triangle?
// not sure if t is the best idea, maybe should be returning undefined
return target.Set(-2, -1, -1)
}
invDenom := 1 / denom
u := (dot11*dot02 - dot01*dot12) * invDenom
v := (dot00*dot12 - dot01*dot02) * invDenom
// barycentric coordinates must always sum to 1
return target.Set(1-u-v, v, u)
}
// ContainsPoint :
func ContainsPoint(point, a, b, c Vector3) bool {
GetBarycoord(point, a, b, c, _v3)
return _v3.X >= 0 && _v3.Y >= 0 && (_v3.X+_v3.Y) <= 1
}
// GetUV :
func GetUV(point, p1, p2, p3 Vector3, uv1, uv2, uv3, target Vector2) *Vector2 {
GetBarycoord(point, p1, p2, p3, _v3)
target.Set(0, 0)
target.AddScaledVector(uv1, _v3.X)
target.AddScaledVector(uv2, _v3.Y)
target.AddScaledVector(uv3, _v3.Z)
return &target
}
// IsFrontFacing :
func IsFrontFacing(a, b, c, direction Vector3) bool {
_v0Triangle.SubVectors(c, b)
_v1Triangle.SubVectors(a, b)
// strictly front facing
return _v0Triangle.Cross(_v1Triangle).Dot(direction) < 0
}
// Set :
func (t Triangle) Set(a, b, c Vector3) *Triangle {
t.A.Copy(a)
t.B.Copy(b)
t.C.Copy(c)
return &t
}
// SetFromPointsAndIndices :
func (t Triangle) SetFromPointsAndIndices(points []Vector3, i0, i1, i2 int) *Triangle {
t.A.Copy(points[i0])
t.B.Copy(points[i1])
t.C.Copy(points[i2])
return &t
}
// Clone :
func (t Triangle) Clone() *Triangle {
return NewTriangle(t.A, t.B, t.C).Copy(t)
}
// Copy :
func (t Triangle) Copy(triangle Triangle) *Triangle {
t.A.Copy(triangle.A)
t.B.Copy(triangle.B)
t.C.Copy(triangle.C)
return &t
}
// GetArea :
func (t Triangle) GetArea() float64 {
_v0Triangle.SubVectors(t.C, t.B)
_v1Triangle.SubVectors(t.A, t.B)
return _v0Triangle.Cross(_v1Triangle).Length() * 0.5
}
// GetMidpoint :
func (t Triangle) GetMidpoint(target Vector3) *Vector3 {
return target.AddVectors(t.A, t.B).Add(t.C).MultiplyScalar(1 / 3)
}
// GetNormal :
func (t Triangle) GetNormal(target Vector3) *Vector3 {
return GetNormal(t.A, t.B, t.C, target)
}
// GetPlane :
func (t Triangle) GetPlane(target Plane) *Plane {
return target.SetFromCoplanarPoints(t.A, t.B, t.C)
}
// GetBarycoord :
func (t Triangle) GetBarycoord(point, target Vector3) *Vector3 {
return GetBarycoord(point, t.A, t.B, t.C, target)
}
// GetUV :
func (t Triangle) GetUV(point Vector3, uv1, uv2, uv3, target Vector2) *Vector2 {
return GetUV(point, t.A, t.B, t.C, uv1, uv2, uv3, target)
}
// ContainsPoint :
func (t Triangle) ContainsPoint(point Vector3) bool {
return ContainsPoint(point, t.A, t.B, t.C)
}
// IsFrontFacing :
func (t Triangle) IsFrontFacing(direction Vector3) bool {
return IsFrontFacing(t.A, t.B, t.C, direction)
}
// IntersectsBox :
func (t Triangle) IntersectsBox(box Box3) bool {
return box.IntersectsTriangle(t)
}
// ClosestPointToPoint :
func (t Triangle) ClosestPointToPoint(p, target Vector3) *Vector3 {
a, b, c := t.A, t.B, t.C
var v, w float64
// algorithm thanks to Real-Time Collision Detection by Christer Ericson,
// published by Morgan Kaufmann Publishers, (c) 2005 Elsevier Inc.,
// under the accompanying license; see chapter 5.1.5 for detailed explanation.
// basically, we're distinguishing which of the voronoi regions of the triangle
// the point lies in with the minimum amount of redundant computation.
_vab.SubVectors(b, a)
_vac.SubVectors(c, a)
_vap.SubVectors(p, a)
d1 := _vab.Dot(_vap)
d2 := _vac.Dot(_vap)
if d1 <= 0 && d2 <= 0 {
// vertex region of A; barycentric coords (1, 0, 0)
return target.Copy(a)
}
_vbp.SubVectors(p, b)
d3 := _vab.Dot(_vbp)
d4 := _vac.Dot(_vbp)
if d3 >= 0 && d4 <= d3 {
// vertex region of B; barycentric coords (0, 1, 0)
return target.Copy(b)
}
vc := d1*d4 - d3*d2
if vc <= 0 && d1 >= 0 && d3 <= 0 {
v = d1 / (d1 - d3)
// edge region of AB; barycentric coords (1-v, v, 0)
return target.Copy(a).AddScaledVector(_vab, v)
}
_vcp.SubVectors(p, c)
d5 := _vab.Dot(_vcp)
d6 := _vac.Dot(_vcp)
if d6 >= 0 && d5 <= d6 {
// vertex region of C; barycentric coords (0, 0, 1)
return target.Copy(c)
}
vb := d5*d2 - d1*d6
if vb <= 0 && d2 >= 0 && d6 <= 0 {
w = d2 / (d2 - d6)
// edge region of AC; barycentric coords (1-w, 0, w)
return target.Copy(a).AddScaledVector(_vac, w)
}
va := d3*d6 - d5*d4
if va <= 0 && (d4-d3) >= 0 && (d5-d6) >= 0 {
_vbc.SubVectors(c, b)
w = (d4 - d3) / ((d4 - d3) + (d5 - d6))
// edge region of BC; barycentric coords (0, 1-w, w)
return target.Copy(b).AddScaledVector(_vbc, w) // edge region of BC
}
// face region
denom := 1 / (va + vb + vc)
// u = va * denom
v = vb * denom
w = vc * denom
return target.Copy(a).AddScaledVector(_vab, v).AddScaledVector(_vac, w)
}
// Equals :
func (t Triangle) Equals(triangle Triangle) bool {
return triangle.A.Equals(t.A) && triangle.B.Equals(t.B) && triangle.C.Equals(t.C)
}
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Go
1
https://gitee.com/tengge1/go-three-math.git
[email protected]:tengge1/go-three-math.git
tengge1
go-three-math
go-three-math
master

搜索帮助