1 Star 0 Fork 0

tansunyj/DHLive-ComfyUI

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
data_preparation.py 10.28 KB
一键复制 编辑 原始数据 按行查看 历史
trueto 提交于 2024-08-06 10:28 . init commit
import uuid
import tqdm
import numpy as np
import cv2
import sys
import os
import math
import pickle
import mediapipe as mp
import folder_paths
mp_face_mesh = mp.solutions.face_mesh
mp_face_detection = mp.solutions.face_detection
now_dir = os.path.dirname(os.path.abspath(__file__))
ouput_dir = folder_paths.get_output_directory()
work_dir = os.path.join(ouput_dir,"DHLive")
os.makedirs(work_dir,exist_ok=True)
def detect_face(frame):
# 剔除掉多个人脸、大角度侧脸(鼻子不在两个眼之间)、部分人脸框在画面外、人脸像素低于80*80的
with mp_face_detection.FaceDetection(
model_selection=1, min_detection_confidence=0.5) as face_detection:
results = face_detection.process(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
if not results.detections or len(results.detections) > 1:
return -1, None
rect = results.detections[0].location_data.relative_bounding_box
out_rect = [rect.xmin, rect.xmin + rect.width, rect.ymin, rect.ymin + rect.height]
nose_ = mp_face_detection.get_key_point(
results.detections[0], mp_face_detection.FaceKeyPoint.NOSE_TIP)
l_eye_ = mp_face_detection.get_key_point(
results.detections[0], mp_face_detection.FaceKeyPoint.LEFT_EYE)
r_eye_ = mp_face_detection.get_key_point(
results.detections[0], mp_face_detection.FaceKeyPoint.RIGHT_EYE)
# print(nose_, l_eye_, r_eye_)
if nose_.x > l_eye_.x or nose_.x < r_eye_.x:
return -2, out_rect
h, w = frame.shape[:2]
# print(frame.shape)
if rect.xmin < 0 or rect.ymin < 0 or rect.xmin + rect.width > w or rect.ymin + rect.height > h:
return -3, out_rect
if rect.width * w < 100 or rect.height * h < 100:
return -4, out_rect
return 1, out_rect
def calc_face_interact(face0, face1):
x_min = min(face0[0], face1[0])
x_max = max(face0[1], face1[1])
y_min = min(face0[2], face1[2])
y_max = max(face0[3], face1[3])
tmp0 = ((face0[1] - face0[0]) * (face0[3] - face0[2])) / ((x_max - x_min) * (y_max - y_min))
tmp1 = ((face1[1] - face1[0]) * (face1[3] - face1[2])) / ((x_max - x_min) * (y_max - y_min))
return min(tmp0, tmp1)
def detect_face_mesh(frame):
with mp_face_mesh.FaceMesh(
static_image_mode=True,
max_num_faces=1,
refine_landmarks=True,
min_detection_confidence=0.5) as face_mesh:
results = face_mesh.process(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
pts_3d = np.zeros([478, 3])
if not results.multi_face_landmarks:
print("****** WARNING! No face detected! ******")
else:
image_height, image_width = frame.shape[:2]
for face_landmarks in results.multi_face_landmarks:
for index_, i in enumerate(face_landmarks.landmark):
x_px = min(math.floor(i.x * image_width), image_width - 1)
y_px = min(math.floor(i.y * image_height), image_height - 1)
z_px = min(math.floor(i.z * image_width), image_width - 1)
pts_3d[index_] = np.array([x_px, y_px, z_px])
return pts_3d
def ExtractFromVideo(video_path, circle = False):
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return 0
dir_path = os.path.dirname(video_path)
vid_width = cap.get(cv2.CAP_PROP_FRAME_WIDTH) # 宽度
vid_height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT) # 高度
totalFrames = cap.get(cv2.CAP_PROP_FRAME_COUNT) # 总帧数
totalFrames = int(totalFrames)
pts_3d = np.zeros([totalFrames, 478, 3])
frame_index = 0
face_rect_list = []
mat_list = []
model_name = os.path.basename(video_path)[:-4]
# os.makedirs("../preparation/{}/image".format(model_name))
for frame_index in tqdm.tqdm(range(totalFrames)):
ret, frame = cap.read() # 按帧读取视频
# #到视频结尾时终止
if ret is False:
break
# cv2.imwrite("../preparation/{}/image/{:0>6d}.png".format(model_name, frame_index), frame)
tag_, rect = detect_face(frame)
if frame_index == 0 and tag_ != 1:
print("第一帧人脸检测异常,请剔除掉多个人脸、大角度侧脸(鼻子不在两个眼之间)、部分人脸框在画面外、人脸像素低于80*80")
pts_3d = -1
break
elif tag_ == -1: # 有时候人脸检测会失败,就用上一帧的结果替代这一帧的结果
rect = face_rect_list[-1]
elif tag_ != 1:
print("第{}帧人脸检测异常,请剔除掉多个人脸、大角度侧脸(鼻子不在两个眼之间)、部分人脸框在画面外、人脸像素低于80*80, tag: {}".format(frame_index, tag_))
# exit()
if len(face_rect_list) > 0:
face_area_inter = calc_face_interact(face_rect_list[-1], rect)
# print(frame_index, face_area_inter)
if face_area_inter < 0.6:
print("人脸区域变化幅度太大,请复查,超出值为{}, frame_num: {}".format(face_area_inter, frame_index))
pts_3d = -2
break
face_rect_list.append(rect)
x_min = rect[0] * vid_width
y_min = rect[2] * vid_height
x_max = rect[1] * vid_width
y_max = rect[3] * vid_height
seq_w, seq_h = x_max - x_min, y_max - y_min
x_mid, y_mid = (x_min + x_max) / 2, (y_min + y_max) / 2
# x_min = int(max(0, x_mid - seq_w * 0.65))
# y_min = int(max(0, y_mid - seq_h * 0.4))
# x_max = int(min(vid_width, x_mid + seq_w * 0.65))
# y_max = int(min(vid_height, y_mid + seq_h * 0.8))
crop_size = int(max(seq_w * 1.35, seq_h * 1.35))
x_min = int(max(0, x_mid - crop_size * 0.5))
y_min = int(max(0, y_mid - crop_size * 0.45))
x_max = int(min(vid_width, x_min + crop_size))
y_max = int(min(vid_height, y_min + crop_size))
frame_face = frame[y_min:y_max, x_min:x_max]
print(y_min, y_max, x_min, x_max)
# cv2.imshow("s", frame_face)
# cv2.waitKey(20)
frame_kps = detect_face_mesh(frame_face)
pts_3d[frame_index] = frame_kps + np.array([x_min, y_min, 0])
cap.release() # 释放视频对象
return pts_3d
def CirculateVideo(video_in_path, video_out_path, export_imgs = False):
# 1 视频转换为25FPS, 并折叠循环拼接
front_video_path = os.path.join(work_dir,"front.mp4")
back_video_path = os.path.join(work_dir,"back.mp4")
video_concat_path = os.path.join(work_dir,"video_concat.txt")
with open(video_concat_path,"w",encoding="utf-8") as f:
f.write(f"file '{front_video_path}'\n")
f.write(f"file '{back_video_path}'")
# ffmpeg_cmd = "ffmpeg -i {} -r 25 -ss 00:00:00 -t 00:02:00 -an -loglevel quiet -y {}".format(video_in_path, front_video_path)
ffmpeg_cmd = "ffmpeg -i {} -r 25 -an -loglevel quiet -y {}".format(video_in_path, front_video_path)
os.system(ffmpeg_cmd)
# front_video_path = video_in_path
cap = cv2.VideoCapture(front_video_path)
vid_width = cap.get(cv2.CAP_PROP_FRAME_WIDTH) # 宽度
vid_height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT) # 高度
frames = cap.get(cv2.CAP_PROP_FRAME_COUNT)
cap.release()
ffmpeg_cmd = "ffmpeg -i {} -vf reverse -y {}".format(front_video_path, back_video_path)
os.system(ffmpeg_cmd)
ffmpeg_cmd = "ffmpeg -f concat -safe 0 -i {} -c:v copy -y {}".format(video_concat_path, video_out_path)
os.system(ffmpeg_cmd)
# exit()
print("正向视频帧数:", frames)
pts_3d = ExtractFromVideo(front_video_path)
if type(pts_3d) is np.ndarray and len(pts_3d) == frames:
print("关键点已提取")
pts_3d = np.concatenate([pts_3d, pts_3d[::-1]], axis=0)
Path_output_pkl = "{}/keypoint_rotate.pkl".format(os.path.dirname(video_out_path))
with open(Path_output_pkl, "wb") as f:
pickle.dump(pts_3d, f)
if export_imgs:
# 计算整个视频中人脸的范围
x_min, y_min, x_max, y_max = np.min(pts_3d[:, :, 0]), np.min(
pts_3d[:, :, 1]), np.max(
pts_3d[:, :, 0]), np.max(pts_3d[:, :, 1])
new_w = int((x_max - x_min) * 0.55) * 2
new_h = int((y_max - y_min) * 0.6) * 2
center_x = int((x_max + x_min) / 2.)
center_y = int(y_min + (y_max - y_min) * 0.6)
size = max(new_h, new_w)
x_min, y_min, x_max, y_max = int(center_x - size // 2), int(center_y - size // 2), int(
center_x + size // 2), int(center_y + size // 2)
# 确定裁剪区域上边top和左边left坐标
top = y_min
left = x_min
# 裁剪区域与原图的重合区域
top_coincidence = int(max(top, 0))
bottom_coincidence = int(min(y_max, vid_height))
left_coincidence = int(max(left, 0))
right_coincidence = int(min(x_max, vid_width))
print("人脸活动范围:{}:{}, {}:{}".format(top_coincidence, bottom_coincidence, left_coincidence, right_coincidence))
np.savetxt("{}/face_rect.txt".format(os.path.dirname(video_out_path)),
np.array([top_coincidence, bottom_coincidence, left_coincidence, right_coincidence]))
os.makedirs("{}/image".format(os.path.dirname(video_out_path)))
ffmpeg_cmd = "ffmpeg -i {} -vf crop={}:{}:{}:{},scale=512:512:flags=neighbor -loglevel quiet -y {}/image/%06d.png".format(
front_video_path,
right_coincidence - left_coincidence,
bottom_coincidence - top_coincidence,
left_coincidence,
top_coincidence,
os.path.dirname(video_out_path)
)
os.system(ffmpeg_cmd)
cap = cv2.VideoCapture(video_out_path)
frames = cap.get(cv2.CAP_PROP_FRAME_COUNT)
cap.release()
print("循环视频帧数:", frames)
def main():
# 检查命令行参数的数量
if len(sys.argv) != 2:
print("Usage: python data_preparation.py <video_name>")
sys.exit(1) # 参数数量不正确时退出程序
# 获取video_name参数
video_name = sys.argv[1]
print(f"Video name is set to: {video_name}")
new_data_path = "video_data/{}".format(uuid.uuid1())
os.makedirs(new_data_path, exist_ok=True)
video_out_path = "{}/circle.mp4".format(new_data_path)
CirculateVideo(video_name, video_out_path, export_imgs=False)
if __name__ == "__main__":
main()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/tansunyj/DHLive-ComfyUI.git
[email protected]:tansunyj/DHLive-ComfyUI.git
tansunyj
DHLive-ComfyUI
DHLive-ComfyUI
main

搜索帮助