代码拉取完成,页面将自动刷新
同步操作将从 北京智云视图科技有限公司/Mobilenet-SSD-License-Plate-Detection 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
layer {
name: "data"
type: "Input"
top: "data"
input_param {
shape {
dim: 1
dim: 3
dim: 512
dim: 512
}
}
}
layer {
name: "ssd0_mobilenet0_conv0"
type: "Convolution"
bottom: "data"
top: "ssd0_mobilenet0_conv0"
convolution_param {
num_output: 8
bias_term: true
pad: 1
kernel_size: 3
group: 1
stride: 2
dilation: 1
}
}
layer {
name: "ssd0_mobilenet0_batchnorm0/relu"
type: "ReLU"
bottom: "ssd0_mobilenet0_conv0"
top: "ssd0_mobilenet0_conv0"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_mobilenet0_conv1"
type: "Convolution"
bottom: "ssd0_mobilenet0_conv0"
top: "ssd0_mobilenet0_conv1"
convolution_param {
num_output: 8
bias_term: true
pad: 1
kernel_size: 3
group: 8
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_mobilenet0_batchnorm1/relu"
type: "ReLU"
bottom: "ssd0_mobilenet0_conv1"
top: "ssd0_mobilenet0_conv1"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_mobilenet0_conv2"
type: "Convolution"
bottom: "ssd0_mobilenet0_conv1"
top: "ssd0_mobilenet0_conv2"
convolution_param {
num_output: 16
bias_term: true
pad: 0
kernel_size: 1
group: 1
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_mobilenet0_batchnorm2/relu"
type: "ReLU"
bottom: "ssd0_mobilenet0_conv2"
top: "ssd0_mobilenet0_conv2"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_mobilenet0_conv3"
type: "Convolution"
bottom: "ssd0_mobilenet0_conv2"
top: "ssd0_mobilenet0_conv3"
convolution_param {
num_output: 16
bias_term: true
pad: 1
kernel_size: 3
group: 16
stride: 2
dilation: 1
}
}
layer {
name: "ssd0_mobilenet0_batchnorm3/relu"
type: "ReLU"
bottom: "ssd0_mobilenet0_conv3"
top: "ssd0_mobilenet0_conv3"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_mobilenet0_conv4"
type: "Convolution"
bottom: "ssd0_mobilenet0_conv3"
top: "ssd0_mobilenet0_conv4"
convolution_param {
num_output: 32
bias_term: true
pad: 0
kernel_size: 1
group: 1
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_mobilenet0_batchnorm4/relu"
type: "ReLU"
bottom: "ssd0_mobilenet0_conv4"
top: "ssd0_mobilenet0_conv4"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_mobilenet0_conv5"
type: "Convolution"
bottom: "ssd0_mobilenet0_conv4"
top: "ssd0_mobilenet0_conv5"
convolution_param {
num_output: 32
bias_term: true
pad: 1
kernel_size: 3
group: 32
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_mobilenet0_batchnorm5/relu"
type: "ReLU"
bottom: "ssd0_mobilenet0_conv5"
top: "ssd0_mobilenet0_conv5"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_mobilenet0_conv6"
type: "Convolution"
bottom: "ssd0_mobilenet0_conv5"
top: "ssd0_mobilenet0_conv6"
convolution_param {
num_output: 32
bias_term: true
pad: 0
kernel_size: 1
group: 1
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_mobilenet0_batchnorm6/relu"
type: "ReLU"
bottom: "ssd0_mobilenet0_conv6"
top: "ssd0_mobilenet0_conv6"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_mobilenet0_conv7"
type: "Convolution"
bottom: "ssd0_mobilenet0_conv6"
top: "ssd0_mobilenet0_conv7"
convolution_param {
num_output: 32
bias_term: true
pad: 1
kernel_size: 3
group: 32
stride: 2
dilation: 1
}
}
layer {
name: "ssd0_mobilenet0_batchnorm7/relu"
type: "ReLU"
bottom: "ssd0_mobilenet0_conv7"
top: "ssd0_mobilenet0_conv7"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_mobilenet0_conv8"
type: "Convolution"
bottom: "ssd0_mobilenet0_conv7"
top: "ssd0_mobilenet0_conv8"
convolution_param {
num_output: 64
bias_term: true
pad: 0
kernel_size: 1
group: 1
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_mobilenet0_batchnorm8/relu"
type: "ReLU"
bottom: "ssd0_mobilenet0_conv8"
top: "ssd0_mobilenet0_conv8"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_mobilenet0_conv9"
type: "Convolution"
bottom: "ssd0_mobilenet0_conv8"
top: "ssd0_mobilenet0_conv9"
convolution_param {
num_output: 64
bias_term: true
pad: 1
kernel_size: 3
group: 64
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_mobilenet0_batchnorm9/relu"
type: "ReLU"
bottom: "ssd0_mobilenet0_conv9"
top: "ssd0_mobilenet0_conv9"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_mobilenet0_conv10"
type: "Convolution"
bottom: "ssd0_mobilenet0_conv9"
top: "ssd0_mobilenet0_conv10"
convolution_param {
num_output: 64
bias_term: true
pad: 0
kernel_size: 1
group: 1
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_mobilenet0_batchnorm10/relu"
type: "ReLU"
bottom: "ssd0_mobilenet0_conv10"
top: "ssd0_mobilenet0_conv10"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_mobilenet0_conv11"
type: "Convolution"
bottom: "ssd0_mobilenet0_conv10"
top: "ssd0_mobilenet0_conv11"
convolution_param {
num_output: 64
bias_term: true
pad: 1
kernel_size: 3
group: 64
stride: 2
dilation: 1
}
}
layer {
name: "ssd0_mobilenet0_batchnorm11/relu"
type: "ReLU"
bottom: "ssd0_mobilenet0_conv11"
top: "ssd0_mobilenet0_conv11"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_mobilenet0_conv12"
type: "Convolution"
bottom: "ssd0_mobilenet0_conv11"
top: "ssd0_mobilenet0_conv12"
convolution_param {
num_output: 128
bias_term: true
pad: 0
kernel_size: 1
group: 1
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_mobilenet0_batchnorm12/relu"
type: "ReLU"
bottom: "ssd0_mobilenet0_conv12"
top: "ssd0_mobilenet0_conv12"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_mobilenet0_conv13"
type: "Convolution"
bottom: "ssd0_mobilenet0_conv12"
top: "ssd0_mobilenet0_conv13"
convolution_param {
num_output: 128
bias_term: true
pad: 1
kernel_size: 3
group: 128
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_mobilenet0_batchnorm13/relu"
type: "ReLU"
bottom: "ssd0_mobilenet0_conv13"
top: "ssd0_mobilenet0_conv13"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_mobilenet0_conv14"
type: "Convolution"
bottom: "ssd0_mobilenet0_conv13"
top: "ssd0_mobilenet0_conv14"
convolution_param {
num_output: 128
bias_term: true
pad: 0
kernel_size: 1
group: 1
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_mobilenet0_batchnorm14/relu"
type: "ReLU"
bottom: "ssd0_mobilenet0_conv14"
top: "ssd0_mobilenet0_conv14"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_mobilenet0_conv15"
type: "Convolution"
bottom: "ssd0_mobilenet0_conv14"
top: "ssd0_mobilenet0_conv15"
convolution_param {
num_output: 128
bias_term: true
pad: 1
kernel_size: 3
group: 128
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_mobilenet0_batchnorm15/relu"
type: "ReLU"
bottom: "ssd0_mobilenet0_conv15"
top: "ssd0_mobilenet0_conv15"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_mobilenet0_conv16"
type: "Convolution"
bottom: "ssd0_mobilenet0_conv15"
top: "ssd0_mobilenet0_conv16"
convolution_param {
num_output: 128
bias_term: true
pad: 0
kernel_size: 1
group: 1
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_mobilenet0_batchnorm16/relu"
type: "ReLU"
bottom: "ssd0_mobilenet0_conv16"
top: "ssd0_mobilenet0_conv16"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_mobilenet0_conv17"
type: "Convolution"
bottom: "ssd0_mobilenet0_conv16"
top: "ssd0_mobilenet0_conv17"
convolution_param {
num_output: 128
bias_term: true
pad: 1
kernel_size: 3
group: 128
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_mobilenet0_batchnorm17/relu"
type: "ReLU"
bottom: "ssd0_mobilenet0_conv17"
top: "ssd0_mobilenet0_conv17"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_mobilenet0_conv18"
type: "Convolution"
bottom: "ssd0_mobilenet0_conv17"
top: "ssd0_mobilenet0_conv18"
convolution_param {
num_output: 128
bias_term: true
pad: 0
kernel_size: 1
group: 1
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_mobilenet0_batchnorm18/relu"
type: "ReLU"
bottom: "ssd0_mobilenet0_conv18"
top: "ssd0_mobilenet0_conv18"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_mobilenet0_conv19"
type: "Convolution"
bottom: "ssd0_mobilenet0_conv18"
top: "ssd0_mobilenet0_conv19"
convolution_param {
num_output: 128
bias_term: true
pad: 1
kernel_size: 3
group: 128
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_mobilenet0_batchnorm19/relu"
type: "ReLU"
bottom: "ssd0_mobilenet0_conv19"
top: "ssd0_mobilenet0_conv19"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_mobilenet0_conv20"
type: "Convolution"
bottom: "ssd0_mobilenet0_conv19"
top: "ssd0_mobilenet0_conv20"
convolution_param {
num_output: 128
bias_term: true
pad: 0
kernel_size: 1
group: 1
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_mobilenet0_batchnorm20/relu"
type: "ReLU"
bottom: "ssd0_mobilenet0_conv20"
top: "ssd0_mobilenet0_conv20"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_mobilenet0_conv21"
type: "Convolution"
bottom: "ssd0_mobilenet0_conv20"
top: "ssd0_mobilenet0_conv21"
convolution_param {
num_output: 128
bias_term: true
pad: 1
kernel_size: 3
group: 128
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_mobilenet0_batchnorm21/relu"
type: "ReLU"
bottom: "ssd0_mobilenet0_conv21"
top: "ssd0_mobilenet0_conv21"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_mobilenet0_conv22"
type: "Convolution"
bottom: "ssd0_mobilenet0_conv21"
top: "ssd0_mobilenet0_conv22"
convolution_param {
num_output: 128
bias_term: true
pad: 0
kernel_size: 1
group: 1
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_mobilenet0_batchnorm22/relu"
type: "ReLU"
bottom: "ssd0_mobilenet0_conv22"
top: "ssd0_mobilenet0_conv22"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_convpredictor1_conv0"
type: "Convolution"
bottom: "ssd0_mobilenet0_conv22"
top: "ssd0_convpredictor1_conv0"
convolution_param {
num_output: 12
bias_term: true
pad: 1
kernel_size: 3
group: 1
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_transpose6"
type: "Permute"
bottom: "ssd0_convpredictor1_conv0"
top: "ssd0_transpose6"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "ssd0_flatten6"
type: "Flatten"
bottom: "ssd0_transpose6"
top: "ssd0_flatten6"
}
layer {
name: "ssd0_mobilenet0_conv23"
type: "Convolution"
bottom: "ssd0_mobilenet0_conv22"
top: "ssd0_mobilenet0_conv23"
convolution_param {
num_output: 128
bias_term: true
pad: 1
kernel_size: 3
group: 128
stride: 2
dilation: 1
}
}
layer {
name: "ssd0_mobilenet0_batchnorm23/relu"
type: "ReLU"
bottom: "ssd0_mobilenet0_conv23"
top: "ssd0_mobilenet0_conv23"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_mobilenet0_conv24"
type: "Convolution"
bottom: "ssd0_mobilenet0_conv23"
top: "ssd0_mobilenet0_conv24"
convolution_param {
num_output: 256
bias_term: true
pad: 0
kernel_size: 1
group: 1
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_mobilenet0_batchnorm24/relu"
type: "ReLU"
bottom: "ssd0_mobilenet0_conv24"
top: "ssd0_mobilenet0_conv24"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_mobilenet0_conv25"
type: "Convolution"
bottom: "ssd0_mobilenet0_conv24"
top: "ssd0_mobilenet0_conv25"
convolution_param {
num_output: 256
bias_term: true
pad: 1
kernel_size: 3
group: 256
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_mobilenet0_batchnorm25/relu"
type: "ReLU"
bottom: "ssd0_mobilenet0_conv25"
top: "ssd0_mobilenet0_conv25"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_mobilenet0_conv26"
type: "Convolution"
bottom: "ssd0_mobilenet0_conv25"
top: "ssd0_mobilenet0_conv26"
convolution_param {
num_output: 256
bias_term: true
pad: 0
kernel_size: 1
group: 1
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_mobilenet0_batchnorm26/relu"
type: "ReLU"
bottom: "ssd0_mobilenet0_conv26"
top: "ssd0_mobilenet0_conv26"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_convpredictor3_conv0"
type: "Convolution"
bottom: "ssd0_mobilenet0_conv26"
top: "ssd0_convpredictor3_conv0"
convolution_param {
num_output: 16
bias_term: true
pad: 1
kernel_size: 3
group: 1
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_transpose7"
type: "Permute"
bottom: "ssd0_convpredictor3_conv0"
top: "ssd0_transpose7"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "ssd0_flatten7"
type: "Flatten"
bottom: "ssd0_transpose7"
top: "ssd0_flatten7"
}
layer {
name: "ssd0_expand_trans_conv0"
type: "Convolution"
bottom: "ssd0_mobilenet0_conv26"
top: "ssd0_expand_trans_conv0"
convolution_param {
num_output: 128
bias_term: true
pad: 1
kernel_size: 1
group: 1
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_expand_trans_bn0/relu"
type: "ReLU"
bottom: "ssd0_expand_trans_conv0"
top: "ssd0_expand_trans_conv0"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_expand_conv0"
type: "Convolution"
bottom: "ssd0_expand_trans_conv0"
top: "ssd0_expand_conv0"
convolution_param {
num_output: 128
bias_term: true
pad: 1
kernel_size: 3
group: 1
stride: 2
dilation: 1
}
}
layer {
name: "ssd0_expand_bn0/relu"
type: "ReLU"
bottom: "ssd0_expand_conv0"
top: "ssd0_expand_conv0"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_convpredictor5_conv0"
type: "Convolution"
bottom: "ssd0_expand_conv0"
top: "ssd0_convpredictor5_conv0"
convolution_param {
num_output: 16
bias_term: true
pad: 1
kernel_size: 3
group: 1
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_transpose8"
type: "Permute"
bottom: "ssd0_convpredictor5_conv0"
top: "ssd0_transpose8"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "ssd0_flatten8"
type: "Flatten"
bottom: "ssd0_transpose8"
top: "ssd0_flatten8"
}
layer {
name: "ssd0_expand_trans_conv1"
type: "Convolution"
bottom: "ssd0_expand_conv0"
top: "ssd0_expand_trans_conv1"
convolution_param {
num_output: 128
bias_term: true
pad: 1
kernel_size: 1
group: 1
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_expand_trans_bn1/relu"
type: "ReLU"
bottom: "ssd0_expand_trans_conv1"
top: "ssd0_expand_trans_conv1"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_expand_conv1"
type: "Convolution"
bottom: "ssd0_expand_trans_conv1"
top: "ssd0_expand_conv1"
convolution_param {
num_output: 128
bias_term: true
pad: 1
kernel_size: 3
group: 1
stride: 2
dilation: 1
}
}
layer {
name: "ssd0_expand_bn1/relu"
type: "ReLU"
bottom: "ssd0_expand_conv1"
top: "ssd0_expand_conv1"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_convpredictor7_conv0"
type: "Convolution"
bottom: "ssd0_expand_conv1"
top: "ssd0_convpredictor7_conv0"
convolution_param {
num_output: 16
bias_term: true
pad: 1
kernel_size: 3
group: 1
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_transpose9"
type: "Permute"
bottom: "ssd0_convpredictor7_conv0"
top: "ssd0_transpose9"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "ssd0_flatten9"
type: "Flatten"
bottom: "ssd0_transpose9"
top: "ssd0_flatten9"
}
layer {
name: "ssd0_expand_trans_conv2"
type: "Convolution"
bottom: "ssd0_expand_conv1"
top: "ssd0_expand_trans_conv2"
convolution_param {
num_output: 128
bias_term: true
pad: 1
kernel_size: 1
group: 1
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_expand_trans_bn2/relu"
type: "ReLU"
bottom: "ssd0_expand_trans_conv2"
top: "ssd0_expand_trans_conv2"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_expand_conv2"
type: "Convolution"
bottom: "ssd0_expand_trans_conv2"
top: "ssd0_expand_conv2"
convolution_param {
num_output: 64
bias_term: true
pad: 1
kernel_size: 3
group: 1
stride: 2
dilation: 1
}
}
layer {
name: "ssd0_expand_bn2/relu"
type: "ReLU"
bottom: "ssd0_expand_conv2"
top: "ssd0_expand_conv2"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_convpredictor9_conv0"
type: "Convolution"
bottom: "ssd0_expand_conv2"
top: "ssd0_convpredictor9_conv0"
convolution_param {
num_output: 12
bias_term: true
pad: 1
kernel_size: 3
group: 1
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_transpose10"
type: "Permute"
bottom: "ssd0_convpredictor9_conv0"
top: "ssd0_transpose10"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "ssd0_flatten10"
type: "Flatten"
bottom: "ssd0_transpose10"
top: "ssd0_flatten10"
}
layer {
name: "ssd0_expand_trans_conv3"
type: "Convolution"
bottom: "ssd0_expand_conv2"
top: "ssd0_expand_trans_conv3"
convolution_param {
num_output: 128
bias_term: true
pad: 1
kernel_size: 1
group: 1
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_expand_trans_bn3/relu"
type: "ReLU"
bottom: "ssd0_expand_trans_conv3"
top: "ssd0_expand_trans_conv3"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_expand_conv3"
type: "Convolution"
bottom: "ssd0_expand_trans_conv3"
top: "ssd0_expand_conv3"
convolution_param {
num_output: 64
bias_term: true
pad: 1
kernel_size: 3
group: 1
stride: 2
dilation: 1
}
}
layer {
name: "ssd0_expand_bn3/relu"
type: "ReLU"
bottom: "ssd0_expand_conv3"
top: "ssd0_expand_conv3"
relu_param {
negative_slope: 0.0
}
}
layer {
name: "ssd0_convpredictor11_conv0"
type: "Convolution"
bottom: "ssd0_expand_conv3"
top: "ssd0_convpredictor11_conv0"
convolution_param {
num_output: 12
bias_term: true
pad: 1
kernel_size: 3
group: 1
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_transpose11"
type: "Permute"
bottom: "ssd0_convpredictor11_conv0"
top: "ssd0_transpose11"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "ssd0_flatten11"
type: "Flatten"
bottom: "ssd0_transpose11"
top: "ssd0_flatten11"
}
layer {
name: "ssd0_concat1"
type: "Concat"
bottom: "ssd0_flatten6"
bottom: "ssd0_flatten7"
bottom: "ssd0_flatten8"
bottom: "ssd0_flatten9"
bottom: "ssd0_flatten10"
bottom: "ssd0_flatten11"
top: "ssd0_concat1"
concat_param {
axis: 1
}
}
layer {
name: "ssd0_convpredictor0_conv0"
type: "Convolution"
bottom: "ssd0_mobilenet0_conv22"
top: "ssd0_convpredictor0_conv0"
convolution_param {
num_output: 6
bias_term: true
pad: 1
kernel_size: 3
group: 1
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_transpose0"
type: "Permute"
bottom: "ssd0_convpredictor0_conv0"
top: "ssd0_transpose0"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "ssd0_flatten0"
type: "Flatten"
bottom: "ssd0_transpose0"
top: "ssd0_flatten0"
}
layer {
name: "ssd0_convpredictor2_conv0"
type: "Convolution"
bottom: "ssd0_mobilenet0_conv26"
top: "ssd0_convpredictor2_conv0"
convolution_param {
num_output: 8
bias_term: true
pad: 1
kernel_size: 3
group: 1
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_transpose1"
type: "Permute"
bottom: "ssd0_convpredictor2_conv0"
top: "ssd0_transpose1"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "ssd0_flatten1"
type: "Flatten"
bottom: "ssd0_transpose1"
top: "ssd0_flatten1"
}
layer {
name: "ssd0_convpredictor4_conv0"
type: "Convolution"
bottom: "ssd0_expand_conv0"
top: "ssd0_convpredictor4_conv0"
convolution_param {
num_output: 8
bias_term: true
pad: 1
kernel_size: 3
group: 1
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_transpose2"
type: "Permute"
bottom: "ssd0_convpredictor4_conv0"
top: "ssd0_transpose2"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "ssd0_flatten2"
type: "Flatten"
bottom: "ssd0_transpose2"
top: "ssd0_flatten2"
}
layer {
name: "ssd0_convpredictor6_conv0"
type: "Convolution"
bottom: "ssd0_expand_conv1"
top: "ssd0_convpredictor6_conv0"
convolution_param {
num_output: 8
bias_term: true
pad: 1
kernel_size: 3
group: 1
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_transpose3"
type: "Permute"
bottom: "ssd0_convpredictor6_conv0"
top: "ssd0_transpose3"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "ssd0_flatten3"
type: "Flatten"
bottom: "ssd0_transpose3"
top: "ssd0_flatten3"
}
layer {
name: "ssd0_convpredictor8_conv0"
type: "Convolution"
bottom: "ssd0_expand_conv2"
top: "ssd0_convpredictor8_conv0"
convolution_param {
num_output: 6
bias_term: true
pad: 1
kernel_size: 3
group: 1
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_transpose4"
type: "Permute"
bottom: "ssd0_convpredictor8_conv0"
top: "ssd0_transpose4"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "ssd0_flatten4"
type: "Flatten"
bottom: "ssd0_transpose4"
top: "ssd0_flatten4"
}
layer {
name: "ssd0_convpredictor10_conv0"
type: "Convolution"
bottom: "ssd0_expand_conv3"
top: "ssd0_convpredictor10_conv0"
convolution_param {
num_output: 6
bias_term: true
pad: 1
kernel_size: 3
group: 1
stride: 1
dilation: 1
}
}
layer {
name: "ssd0_transpose5"
type: "Permute"
bottom: "ssd0_convpredictor10_conv0"
top: "ssd0_transpose5"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "ssd0_flatten5"
type: "Flatten"
bottom: "ssd0_transpose5"
top: "ssd0_flatten5"
}
layer {
name: "ssd0_concat0"
type: "Concat"
bottom: "ssd0_flatten0"
bottom: "ssd0_flatten1"
bottom: "ssd0_flatten2"
bottom: "ssd0_flatten3"
bottom: "ssd0_flatten4"
bottom: "ssd0_flatten5"
top: "ssd0_concat0"
concat_param {
axis: 1
}
}
layer {
name: "ssd0_reshape6"
type: "Reshape"
bottom: "ssd0_concat0"
top: "ssd0_reshape6"
reshape_param {
shape {
dim: 0
dim: -1
dim: 2
}
}
}
layer {
name: "softmax0"
type: "Softmax"
bottom: "ssd0_reshape6"
top: "softmax0"
softmax_param {
axis: 2
}
}
layer {
name: "flatten0"
type: "Flatten"
bottom: "softmax0"
top: "flatten0"
}
layer {
name: "ssd0_mobilenet0_relu22_fwd_priorbox"
type: "PriorBox"
bottom: "ssd0_mobilenet0_conv22"
bottom: "data"
top: "ssd0_mobilenet0_relu22_fwd_priorbox"
prior_box_param {
min_size: 51.20000076293945
max_size: 102.4000015258789
aspect_ratio: 1.0
aspect_ratio: 2.0
flip: false
clip: false
variance: 0.10000000149011612
variance: 0.10000000149011612
variance: 0.20000000298023224
variance: 0.20000000298023224
offset: 0.5
}
}
layer {
name: "ssd0_mobilenet0_relu26_fwd_priorbox"
type: "PriorBox"
bottom: "ssd0_mobilenet0_conv26"
bottom: "data"
top: "ssd0_mobilenet0_relu26_fwd_priorbox"
prior_box_param {
min_size: 102.4000015258789
max_size: 189.39999389648438
aspect_ratio: 1.0
aspect_ratio: 2.0
aspect_ratio: 3.0
flip: false
clip: false
variance: 0.10000000149011612
variance: 0.10000000149011612
variance: 0.20000000298023224
variance: 0.20000000298023224
offset: 0.5
}
}
layer {
name: "ssd0_expand_reu0_priorbox"
type: "PriorBox"
bottom: "ssd0_expand_conv0"
bottom: "data"
top: "ssd0_expand_reu0_priorbox"
prior_box_param {
min_size: 189.39999389648438
max_size: 276.3999938964844
aspect_ratio: 1.0
aspect_ratio: 2.0
aspect_ratio: 3.0
flip: false
clip: false
variance: 0.10000000149011612
variance: 0.10000000149011612
variance: 0.20000000298023224
variance: 0.20000000298023224
offset: 0.5
}
}
layer {
name: "ssd0_expand_reu1_priorbox"
type: "PriorBox"
bottom: "ssd0_expand_conv1"
bottom: "data"
top: "ssd0_expand_reu1_priorbox"
prior_box_param {
min_size: 276.3999938964844
max_size: 363.5199890136719
aspect_ratio: 1.0
aspect_ratio: 2.0
aspect_ratio: 3.0
flip: false
clip: false
variance: 0.10000000149011612
variance: 0.10000000149011612
variance: 0.20000000298023224
variance: 0.20000000298023224
offset: 0.5
}
}
layer {
name: "ssd0_expand_reu2_priorbox"
type: "PriorBox"
bottom: "ssd0_expand_conv2"
bottom: "data"
top: "ssd0_expand_reu2_priorbox"
prior_box_param {
min_size: 363.5199890136719
max_size: 450.6000061035156
aspect_ratio: 1.0
aspect_ratio: 2.0
flip: false
clip: false
variance: 0.10000000149011612
variance: 0.10000000149011612
variance: 0.20000000298023224
variance: 0.20000000298023224
offset: 0.5
}
}
layer {
name: "ssd0_expand_reu3_priorbox"
type: "PriorBox"
bottom: "ssd0_expand_conv3"
bottom: "data"
top: "ssd0_expand_reu3_priorbox"
prior_box_param {
min_size: 450.6000061035156
max_size: 492.0
aspect_ratio: 1.0
aspect_ratio: 2.0
flip: false
clip: false
variance: 0.10000000149011612
variance: 0.10000000149011612
variance: 0.20000000298023224
variance: 0.20000000298023224
offset: 0.5
}
}
layer {
name: "concat0"
type: "Concat"
bottom: "ssd0_mobilenet0_relu22_fwd_priorbox"
bottom: "ssd0_mobilenet0_relu26_fwd_priorbox"
bottom: "ssd0_expand_reu0_priorbox"
bottom: "ssd0_expand_reu1_priorbox"
bottom: "ssd0_expand_reu2_priorbox"
bottom: "ssd0_expand_reu3_priorbox"
top: "concat0"
concat_param {
axis: 2
}
}
layer {
name: "detection_out"
type: "DetectionOutput"
bottom: "ssd0_concat1"
bottom: "flatten0"
bottom: "concat0"
top: "detection_out"
detection_output_param {
num_classes: 2
share_location: true
background_label_id: 0
nms_param {
nms_threshold: 0.44999998807907104
top_k: 400
}
code_type: CENTER_SIZE
keep_top_k: 100
confidence_threshold: 0.009999999776482582
}
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。