1 Star 0 Fork 0

sorossvp/copy yasuko matsubara orbitmap

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
kf.py 7.49 KB
一键复制 编辑 原始数据 按行查看 历史
Yasuko Matsubara 提交于 2020-05-18 14:17 . create OrbitMap (2020-05-12)
#!/usr/bin/env python
##############################################################
# Author: Yasuko Matsubara
# URL: https://www.dm.sanken.osaka-u.ac.jp/~yasuko/
# Date: 2020-01-01
#------------------------------------------------------------#
# Copyright (C) 2020 Yasuko Matsubara & Yasushi Sakurai
# OrbitMap is freely available for non-commercial purposes
##############################################################
import numpy as np
import tool as tl
import pylab as pl
import sys
from pykalman import KalmanFilter
import pickle
try:
from pykalman import KalmanFilter
except:
tl.error("can not find pykalman - please see https://pykalman.github.io/")
#-----------------------------#
ITERf=10 #2
ITERe=20 #10
#-----------------------------#
DBG=tl.NO
class KF:
def __init__(self, data, k):
if(DBG): tl.comment("KF (Kalman Filter)")
(self.n,self.d)=np.shape(data)
# data (observations)
self.data=data
self.k=k
self.initParams()
def initParams(self):
self.kf=_initParams(self)
def em(self, ITER=ITERf, iter_each=ITERe):
self.kf=_em(self,ITER)
def plot(self, fn='', pblock=False):
_plot(self, fn, pblock)
def printParams(self, fn=''):
tl.comment("print/save params [%s]"%(fn))
_printParams(self, fn)
tl.save_obj(self, fn)
def getParams(self):
return _getParams(self)
def gen(self, n=-1):
return _gen(self, n)
def LH(self, data):
try: return self.kf.loglikelihood(data)
except: return -tl.INF
#----------------------------------#
# private functions
#----------------------------------#
def _initParams(model):
d=model.d; n=model.n; k=model.k
if(DBG): tl.msg("init params")
if(DBG): tl.msg("d: %d, n: %d, k:%d"%(d, n, k))
# init KF params
A=np.random.random((k,k))
C=np.random.random((d,k))
A0=np.random.random(k)*tl.ZERO
C0=np.random.random(d)*tl.ZERO
# set KF params
kf = KalmanFilter(
transition_matrices=A, transition_offsets=A0,
observation_matrices=C, observation_offsets=C0,
#transition_covariance = np.eye(k)*tl.ZERO, #((k,k)),
#observation_covariance = np.eye(d)*tl.ZERO, #((k,k)),
#n_dim_state=k, n_dim_obs=d,
em_vars=[
'transition_matrices',
'transition_covariance',
'transition_offsets',
'observation_matrices',
'observation_covariance',
'observation_offsets',
'initial_state_mean',
'initial_state_covariance'])
return kf
def _em(model, ITER=ITERf, iter_each=ITERe):
observations= tl.dcopy(model.data)
if(np.sum(np.isnan(observations))>0):
tl.warning("kf.py --- em: isnan->0")
observations[np.isnan(observations)]=0
observations+=tl.ZERO*np.random.rand(model.n, model.d)
kf=model.kf
if(DBG): tl.msg("kf.em: d=%d, n=%d, k=%d"%(model.d, model.n, model.k))
if(DBG): tl.msg("start EM algorithm ...")
lhs= np.zeros(ITER)
for i in range(len(lhs)):
kf = kf.em(X=observations, n_iter=iter_each)
lhs[i] = model.LH(observations)
#tl.msg("iter:%d/%d, LH= %f"%(i+1,ITER,lhs[i]))
if(DBG): tl.msg("iter:%d/%d (%d)"%(i+1,ITER, iter_each))
if(i>1 and lhs[i-1]>lhs[i]):
break
if(DBG): tl.msg("end")
return kf
def _filter(model):
kf=model.kf
observations=model.data
# Estimate the hidden states using observations up to and including
# time t for t in [0...n_timesteps-1]. This method outputs the mean and
# covariance characterizing the Multivariate Normal distribution for
# P(x_t | z_{1:t})
f_state = kf.filter(observations)[0]
f_obs=np.dot(kf.observation_matrices, f_state.T).T
return (f_state, f_obs)
def _smoother(model):
kf=model.kf
observations=model.data
# Estimate the hidden states using all observations. These estimates
# will be 'smoother' (and are to be preferred) to those produced by
# simply filtering as they are made with later observations in mind.
# Probabilistically, this method produces the mean and covariance
# characterizing,
# P(x_t | z_{1:n_timesteps})
s_state = kf.smooth(observations)[0]
s_obs=np.dot(kf.observation_matrices, s_state.T).T
return (s_state, s_obs)
def _gen(model,n=-1):
kf=model.kf
if(n==-1): n=model.n
k=model.k
# Estimate the state without using any observations. This will let us see how
# good we could do if we ran blind.
g_state=np.zeros((n, k))
for t in range(n - 1):
if t == 0:
g_state[t] = kf.initial_state_mean
g_state[t + 1] = (
np.dot(kf.transition_matrices, g_state[t])
+ kf.transition_offsets# %[t]
)
g_obs=np.dot(kf.observation_matrices, g_state.T).T+kf.observation_offsets
return (g_state, g_obs)
def _plot(model, fn, pblock):
observations=model.data
fig=pl.figure(figsize=(8, 6))
pl.subplot(311)
pl_obs=pl.plot(observations, '-', label='org')
pl.title("Original sequence")
#
(g_state, g_obs)=_gen(model)
(f_state, f_obs)=_filter(model)
#(s_state, s_obs)=_smoother(model)
#
pl.subplot(312)
pl_sta=pl.plot(f_state, label='states(filter)')
pl.title("States (filter)")
pl.subplot(313)
#pl_obs=pl.plot(observations, '--', label='org')
#tl.resetCol()
pl_gen=pl.plot(f_obs, '-', label='gen(filter)')
#pl.title("Generated (filter)")
pl.title("Generated (filter), rmse=%f"%(tl.RMSE(observations, f_obs)))
#
#pl.xlabel('time')
fig.set_tight_layout(True)
if(fn!=''): tl.savefig(fn+'_fit','pdf')
pl.show(block=pblock)
def _getParams(model):
A=model.kf.transition_matrices
b=model.kf.transition_offsets
C=model.kf.observation_matrices
d=model.kf.observation_offsets
Q=model.kf.transition_covariance
R=model.kf.observation_covariance
sm0=model.kf.initial_state_mean
sv0=model.kf.initial_state_covariance
return (A,b,C,d,Q,R,sm0,sv0)
def _printParams(model, fn):
if(fn!=''):
f = open(fn+'_base', 'w')
sys.stdout = f
print("d= %d" %model.d)
print("n= %d" %model.n)
print("k= %d" %model.k)
# full parameter set
(A,b,C,d,Q,R,sm0,sv0)=model.getParams()
print("A (trans):")
tl.printM(A)
print("Q (trans_v):")
tl.printM(Q)
print("C (obs):")
tl.printM(C)
print("R (obs_v):")
tl.printM(R)
print("sm0 (init_m):")
tl.printM(sm0)
print("sv0 (init_v):")
tl.printM(sv0)
if(fn!=''):
sys.stdout = sys.__stdout__
f.close()
def _example1():
# create observations
n=300
d=1
x = np.linspace(0, 3 * np.pi, n)
data=np.zeros((n,d))
observations = 20 * (np.sin(x) + 0.005 * np.random.random(n))
data[:,0]=observations
return (data)
#----------------------------------#
# main
#----------------------------------#
if __name__ == "__main__":
from kf import KF
tl.comment("kf.py -- example ")
tl.msg("create synthetic sequence (1-dim)")
(data)=_example1()
fn='../output/tmp/kf_sample'
k=2 #4
tl.msg("k=%d: # of latent variables"%(k))
tl.msg("init params")
mykf=KF(data,k)
tl.msg("em algorithm -- START")
tic = tl.time.clock()
mykf.em(ITER=2, iter_each=10)
toc = tl.time.clock(); fittime= toc-tic;
tl.msg("em algorithm -- END (%f sec.)"%(fittime))
tl.msg("plot/save models")
mykf.plot(fn)
mykf.printParams(fn)
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/sorossvp/copy-yasuko-matsubara-orbitmap.git
[email protected]:sorossvp/copy-yasuko-matsubara-orbitmap.git
sorossvp
copy-yasuko-matsubara-orbitmap
copy yasuko matsubara orbitmap
master

搜索帮助