代码拉取完成,页面将自动刷新
同步操作将从 cuglujun/DCNv2 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
#!/usr/bin/env python
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import math
import torch
from torch import nn
from torch.autograd import Function
from torch.nn.modules.utils import _pair
from torch.autograd.function import once_differentiable
import _ext as _backend
class _DCNv2(Function):
@staticmethod
def forward(ctx, input, offset, mask, weight, bias,
stride, padding, dilation, deformable_groups):
ctx.stride = _pair(stride)
ctx.padding = _pair(padding)
ctx.dilation = _pair(dilation)
ctx.kernel_size = _pair(weight.shape[2:4])
ctx.deformable_groups = deformable_groups
output = _backend.dcn_v2_forward(input, weight, bias,
offset, mask,
ctx.kernel_size[0], ctx.kernel_size[1],
ctx.stride[0], ctx.stride[1],
ctx.padding[0], ctx.padding[1],
ctx.dilation[0], ctx.dilation[1],
ctx.deformable_groups)
ctx.save_for_backward(input, offset, mask, weight, bias)
return output
@staticmethod
@once_differentiable
def backward(ctx, grad_output):
input, offset, mask, weight, bias = ctx.saved_tensors
grad_input, grad_offset, grad_mask, grad_weight, grad_bias = \
_backend.dcn_v2_backward(input, weight,
bias,
offset, mask,
grad_output,
ctx.kernel_size[0], ctx.kernel_size[1],
ctx.stride[0], ctx.stride[1],
ctx.padding[0], ctx.padding[1],
ctx.dilation[0], ctx.dilation[1],
ctx.deformable_groups)
return grad_input, grad_offset, grad_mask, grad_weight, grad_bias,\
None, None, None, None,
dcn_v2_conv = _DCNv2.apply
class DCNv2(nn.Module):
def __init__(self, in_channels, out_channels,
kernel_size, stride, padding, dilation=1, deformable_groups=1):
super(DCNv2, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = _pair(kernel_size)
self.stride = _pair(stride)
self.padding = _pair(padding)
self.dilation = _pair(dilation)
self.deformable_groups = deformable_groups
self.weight = nn.Parameter(torch.Tensor(
out_channels, in_channels, *self.kernel_size))
self.bias = nn.Parameter(torch.Tensor(out_channels))
self.reset_parameters()
def reset_parameters(self):
n = self.in_channels
for k in self.kernel_size:
n *= k
stdv = 1. / math.sqrt(n)
self.weight.data.uniform_(-stdv, stdv)
self.bias.data.zero_()
def forward(self, input, offset, mask):
assert 2 * self.deformable_groups * self.kernel_size[0] * self.kernel_size[1] == \
offset.shape[1]
assert self.deformable_groups * self.kernel_size[0] * self.kernel_size[1] == \
mask.shape[1]
return dcn_v2_conv(input, offset, mask,
self.weight,
self.bias,
self.stride,
self.padding,
self.dilation,
self.deformable_groups)
class DCN(DCNv2):
def __init__(self, in_channels, out_channels,
kernel_size, stride, padding,
dilation=1, deformable_groups=1):
super(DCN, self).__init__(in_channels, out_channels,
kernel_size, stride, padding, dilation, deformable_groups)
channels_ = self.deformable_groups * 3 * self.kernel_size[0] * self.kernel_size[1]
self.conv_offset_mask = nn.Conv2d(self.in_channels,
channels_,
kernel_size=self.kernel_size,
stride=self.stride,
padding=self.padding,
bias=True)
self.init_offset()
def init_offset(self):
self.conv_offset_mask.weight.data.zero_()
self.conv_offset_mask.bias.data.zero_()
def forward(self, input):
out = self.conv_offset_mask(input)
o1, o2, mask = torch.chunk(out, 3, dim=1)
offset = torch.cat((o1, o2), dim=1)
mask = torch.sigmoid(mask)
return dcn_v2_conv(input, offset, mask,
self.weight, self.bias,
self.stride,
self.padding,
self.dilation,
self.deformable_groups)
class _DCNv2Pooling(Function):
@staticmethod
def forward(ctx, input, rois, offset,
spatial_scale,
pooled_size,
output_dim,
no_trans,
group_size=1,
part_size=None,
sample_per_part=4,
trans_std=.0):
ctx.spatial_scale = spatial_scale
ctx.no_trans = int(no_trans)
ctx.output_dim = output_dim
ctx.group_size = group_size
ctx.pooled_size = pooled_size
ctx.part_size = pooled_size if part_size is None else part_size
ctx.sample_per_part = sample_per_part
ctx.trans_std = trans_std
output, output_count = \
_backend.dcn_v2_psroi_pooling_forward(input, rois, offset,
ctx.no_trans, ctx.spatial_scale,
ctx.output_dim, ctx.group_size,
ctx.pooled_size, ctx.part_size,
ctx.sample_per_part, ctx.trans_std)
ctx.save_for_backward(input, rois, offset, output_count)
return output
@staticmethod
@once_differentiable
def backward(ctx, grad_output):
input, rois, offset, output_count = ctx.saved_tensors
grad_input, grad_offset = \
_backend.dcn_v2_psroi_pooling_backward(grad_output,
input,
rois,
offset,
output_count,
ctx.no_trans,
ctx.spatial_scale,
ctx.output_dim,
ctx.group_size,
ctx.pooled_size,
ctx.part_size,
ctx.sample_per_part,
ctx.trans_std)
return grad_input, None, grad_offset, \
None, None, None, None, None, None, None, None
dcn_v2_pooling = _DCNv2Pooling.apply
class DCNv2Pooling(nn.Module):
def __init__(self,
spatial_scale,
pooled_size,
output_dim,
no_trans,
group_size=1,
part_size=None,
sample_per_part=4,
trans_std=.0):
super(DCNv2Pooling, self).__init__()
self.spatial_scale = spatial_scale
self.pooled_size = pooled_size
self.output_dim = output_dim
self.no_trans = no_trans
self.group_size = group_size
self.part_size = pooled_size if part_size is None else part_size
self.sample_per_part = sample_per_part
self.trans_std = trans_std
def forward(self, input, rois, offset):
assert input.shape[1] == self.output_dim
if self.no_trans:
offset = input.new()
return dcn_v2_pooling(input, rois, offset,
self.spatial_scale,
self.pooled_size,
self.output_dim,
self.no_trans,
self.group_size,
self.part_size,
self.sample_per_part,
self.trans_std)
class DCNPooling(DCNv2Pooling):
def __init__(self,
spatial_scale,
pooled_size,
output_dim,
no_trans,
group_size=1,
part_size=None,
sample_per_part=4,
trans_std=.0,
deform_fc_dim=1024):
super(DCNPooling, self).__init__(spatial_scale,
pooled_size,
output_dim,
no_trans,
group_size,
part_size,
sample_per_part,
trans_std)
self.deform_fc_dim = deform_fc_dim
if not no_trans:
self.offset_mask_fc = nn.Sequential(
nn.Linear(self.pooled_size * self.pooled_size *
self.output_dim, self.deform_fc_dim),
nn.ReLU(inplace=True),
nn.Linear(self.deform_fc_dim, self.deform_fc_dim),
nn.ReLU(inplace=True),
nn.Linear(self.deform_fc_dim, self.pooled_size *
self.pooled_size * 3)
)
self.offset_mask_fc[4].weight.data.zero_()
self.offset_mask_fc[4].bias.data.zero_()
def forward(self, input, rois):
offset = input.new()
if not self.no_trans:
# do roi_align first
n = rois.shape[0]
roi = dcn_v2_pooling(input, rois, offset,
self.spatial_scale,
self.pooled_size,
self.output_dim,
True, # no trans
self.group_size,
self.part_size,
self.sample_per_part,
self.trans_std)
# build mask and offset
offset_mask = self.offset_mask_fc(roi.view(n, -1))
offset_mask = offset_mask.view(
n, 3, self.pooled_size, self.pooled_size)
o1, o2, mask = torch.chunk(offset_mask, 3, dim=1)
offset = torch.cat((o1, o2), dim=1)
mask = torch.sigmoid(mask)
# do pooling with offset and mask
return dcn_v2_pooling(input, rois, offset,
self.spatial_scale,
self.pooled_size,
self.output_dim,
self.no_trans,
self.group_size,
self.part_size,
self.sample_per_part,
self.trans_std) * mask
# only roi_align
return dcn_v2_pooling(input, rois, offset,
self.spatial_scale,
self.pooled_size,
self.output_dim,
self.no_trans,
self.group_size,
self.part_size,
self.sample_per_part,
self.trans_std)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。