1 Star 0 Fork 1

宁宁/modular_tree

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
modules.py 22.00 KB
一键复制 编辑 原始数据 按行查看 历史
# The objective is to build a tree object whose all branches are connected. In other words, the tree is manifold.
# To do so, the tree is generated as a succession of modules that can represent splits, stems and so on.
# The modules are objects from the class Module.
# Each module has a resolution, except the modules that make the junction between two different levels of subdivision
import bpy, bmesh
import numpy as np
from mathutils import Vector, Matrix
from math import pi, sqrt, cos, sin
from .bridge import bridge
from random import random
def square(size):
"""Returns a list of 4 vectors arranged in a square of specified size"""
return [Vector((-1, -1, 0))*size, Vector((1, -1, 0))*size, Vector((1, 1, 0))*size, Vector((-1, 1, 0))*size]
def octagon(size):
result = []
for i in range(8):
angle = pi*i/4
result.append(Vector((cos(angle), sin(angle), 0)) * size)
return result
def directions_to_spin(direction, secondary_direction):
direction_rotation = Vector((0,0,1)).rotation_difference(direction).to_matrix()
secondary_direction = secondary_direction * direction_rotation
spin = - secondary_direction.xy.angle_signed(Vector((-1, 0)))
return spin
def get_direction(primary_direction, angle, spin):
rot_1 = Matrix.Rotation(angle, 4, 'Y')
rot_2 = primary_direction.rotation_difference(Vector((0,0,1))).to_matrix()
rot_3 = Matrix.Rotation(spin, 4, 'Z')
direction = ((rot_1 * Vector((0, 0, 1))) * rot_3) * rot_2
return direction
def average_vector(vectors):
"""returns the average vector of a list of vectors"""
v = sum(vectors, Vector())
v /= len(vectors)
return v
def find_verts_number_rec(module):
if module is None:
return 0
if module.type == 'root' or module.type == 'branch':
return 4 + find_verts_number_rec(module.head_module_1)
if module.type == 'split':
return 8 + find_verts_number_rec(module.head_module_1) + find_verts_number_rec(module.head_module_2)
def find_faces_number_rec(module):
if module is None:
return 1
if module.type == 'root':
return find_faces_number_rec(module.head_module_1)
if module.type == 'branch':
return 4 + find_faces_number_rec(module.head_module_1)
if module.type == 'split':
return 7 + find_faces_number_rec(module.head_module_1) + find_faces_number_rec(module.head_module_2)
def draw_module(root, resolution_levels, twig=False):
max_radius = root.base_radius
root.resolution = resolution_levels
apply_resolution_rec(root.head_module_1, resolution_levels, max_radius, root)
verts = [[] for i in range(resolution_levels+1)]
faces = [[] for i in range(resolution_levels+1)]
uvs = [[] for i in range(resolution_levels+1)]
v_groups = [[] for i in range(resolution_levels+1)]
root.build()
verts[-1] = [v for v in root.verts]
extremities = [root]
while len(extremities) > 0:
new_extremities = []
for module in extremities:
for head in range(module.head_number):
new_module = module.head_module_1 if head == 0 else module.head_module_2
if new_module is not None:
resolution = new_module.resolution
curr_verts_number = len(verts[resolution])
module.link(new_module, head, curr_verts_number)
verts[resolution].extend(new_module.verts)
faces[resolution].extend(new_module.faces)
uvs[resolution].extend(new_module.uvs)
v_groups[resolution].append((list(range(curr_verts_number, curr_verts_number+len(new_module.verts))), new_module.base_radius / max_radius))
new_extremities.append(new_module)
extremities = new_extremities
objects = []
for i in range(resolution_levels+1):
bpy.ops.object.select_all(action='DESELECT')
name = "twig" if twig else "tree"
mesh = bpy.data.meshes.new(name)
bm = bmesh.new()
bm.from_mesh(mesh)
for v in verts[i]:
bm.verts.new(v)
bm.verts.ensure_lookup_table()
for f in faces[i]:
try:
bm.faces.new([bm.verts[j] for j in f])
except:
print(f)
bm.faces.ensure_lookup_table()
bm.loops.layers.uv.new()
uv_layer = bm.loops.layers.uv.active
for index, face in enumerate(bm.faces):
for j, loop in enumerate(face.loops):
loop[uv_layer].uv = uvs[i][index][j]
bm.to_mesh(mesh)
bm.free()
obj = bpy.data.objects.new(name, mesh)
obj.location = bpy.context.scene.cursor_location
vg = obj.vertex_groups.new("radius")
for weights in v_groups[i]:
vg.add(weights[0], weights[1], 'REPLACE')
bpy.context.scene.objects.link(obj)
bpy.context.scene.objects.active = obj
if not twig:
obj["is_tree"] = True
obj["tree_type"] = "object"
obj.select = True
bpy.ops.object.mode_set(mode='EDIT')
bpy.ops.mesh.select_all(action='SELECT')
bpy.ops.mesh.normals_make_consistent(inside=False)
bpy.ops.object.mode_set(mode='OBJECT')
bpy.ops.object.subdivision_set(level=i)
print(i)
objects.append(obj)
for o in objects:
o.select = True
bpy.ops.object.convert(target='MESH')
bpy.ops.object.join()
bridge(bpy.context.object)
def visualize_with_curves(root):
curve_data = bpy.data.curves.new('Tree', type='CURVE')
curve_data.dimensions = '3D'
polyline = curve_data.splines.new('POLY')
x, y, z = root.position
polyline.points[0].co = (x, y, z, 1)
polyline.points[0].radius = root.base_radius
draw_curve_rec(root, polyline, curve_data)
curveOB = bpy.data.objects.new('Tree', curve_data)
curveOB.location = bpy.context.scene.cursor_location
curve_data.bevel_depth = 1
curve_data.bevel_resolution = 0
curve_data.fill_mode = 'FULL'
scene = bpy.context.scene
scene.objects.link(curveOB)
scene.objects.active = curveOB
curveOB["is_tree"] = True
curveOB["tree_type"] = "curve"
curveOB.select = True
def draw_curve_rec(module, polyline, curve_data):
if module is not None:
polyline.points.add(1)
x,y,z = module.position
polyline.points[-1].co = (x, y, z, 1)
polyline.points[-1].radius = module.base_radius
draw_curve_rec(module.head_module_1, polyline, curve_data)
if module.type == 'split' and module.head_module_2 is not None:
new_polyline = curve_data.splines.new('POLY')
# new_polyline.points.add(1)
new_polyline.points[0].co = (x, y, z, 1)
new_polyline.points[0].radius = module.base_radius
draw_curve_rec(module.head_module_2, new_polyline, curve_data)
def roll_indexes(indexes, angle_diff):
""" shift a list according to an angle between two squares so that the indexes are aligned"""
shift = int(4*angle_diff/pi)%8
shifts = np.array([0, -1, -1, -2, -2, -3, -3, 0, 0, 0])
shift = shifts[shift]
return np.roll(indexes, -shift)
def apply_resolution_rec(module, resolution_levels, max_radius, parent):
resolution = max(parent.resolution - 1, int(resolution_levels * module.base_radius / max_radius +.6))
if module.type == 'branch' and parent.type == 'branch':
module.resolution = resolution
if resolution < parent.resolution:
# transition = Transition(module.position, module.direction, module.base_radius, module.length, module.head_1_radius, resolution, module.starting_index, module.spin)
# if parent.head_module_2 == module:
# parent.head_module_2 = transition
# else:
# parent.head_module_1 = transition
# transition.head_module_1 = module.head_module_1
# transition.head_module_2 = module.head_module_2
# module = transition
module.direction = parent.direction
module.draw_base = True
else:
module.resolution = parent.resolution
if module.head_module_1 is not None:
apply_resolution_rec(module.head_module_1, resolution_levels, max_radius, module)
if module.head_module_2 is not None:
apply_resolution_rec(module.head_module_2, resolution_levels, max_radius, module)
class Module:
def __init__(self, position, direction, radius, resolution, starting_index, spin):
self.verts = np.array([])
self.faces = np.array([])
self.uvs = np.array([])
self.uv_height = 0
self.type = 'module'
self.creator = "default"
self.position = position
self.direction = direction
self.base_radius = radius
self.resolution = resolution
self.spin = spin
self.starting_index = starting_index
# self.base_pos = []
self.head_module_1 = None
self.head_module_2 = None
def draw(self):
mesh = bpy.data.meshes.new(self.type)
bm = bmesh.new()
bm.from_mesh(mesh)
for v in self.verts:
bm.verts.new(v)
bm.verts.ensure_lookup_table()
for f in self.faces:
bm.faces.new([bm.verts[i] for i in f])
bm.to_mesh(mesh)
bm.free()
obj = bpy.data.objects.new(self.type, mesh)
obj.location = Vector((0, 0, 0))
bpy.context.scene.objects.link(obj)
bpy.context.scene.objects.active = obj
obj.select = True
def get_faces(self, starting_index=0):
return [tuple([i + starting_index for i in f]) for f in self.faces]
def get_head_direction(self, head):
return self.direction
def get_extremities_rec(self, curr_extremities, selection):
is_selected = selection == [] or self.creator in selection
if self.head_module_1 is None:
if is_selected:
curr_extremities.append((self, 0))
else:
self.head_module_1.get_extremities_rec(curr_extremities, selection)
if self.head_module_2 is None:
if self.type == 'split' and is_selected:
curr_extremities.append((self, 1))
else:
self.head_module_2.get_extremities_rec(curr_extremities, selection)
def __repr__(self):
if self.type == 'split':
return str(self.type) + " " + str(self.position.to_tuple(2)) + " " + self.head_module_1.__repr__() + self.head_module_2.__repr__()
else:
return str(self.type) + " " + str(self.position.to_tuple(2)) + " " + self.head_module_1.__repr__()
class Split(Module):
def __init__(self, position=Vector(), direction=Vector(), radius=1, resolution=0, starting_index=0, spin=0, head_2_length=1, head_2_radius=.6):
Module.__init__(self,position, direction, radius, resolution, starting_index, spin)
self.type = 'split'
self.head_1_radius = .99 * self.base_radius
self.head_2_radius = head_2_radius * self.base_radius
self.primary_angle = pi/18
self.secondary_angle = pi/4
self.head_1_length = self.base_radius * 3
self.head_2_length = head_2_length
self.head_number = 2
self.head_1_direction = Vector()
self.head_2_direction = Vector()
# self.build()
# self.draw()
def get_head_indexes(self, head):
if head == 1:
return [self.starting_index + i for i in range(4)]
else:
return [self.starting_index + 4 + i for i in range(4)]
def get_head_pos(self, head):
if head==0:
direction = self.get_head_direction(0)
return self.position + direction * self.head_1_length
elif head==1:
direction = self.get_head_direction(1)
return self.position + direction * self.head_2_length
def get_head_direction(self, head):
if head == 0:
return get_direction(self.direction, self.primary_angle, self.spin)
else:
return get_direction(self.direction, self.primary_angle - self.secondary_angle, self.spin)
def build(self, base_indexes=range(4)):
radius_correction = 1 - .25**(self.resolution+1)
self.base_radius *= radius_correction
self.head_1_radius *= radius_correction
self.head_2_radius *= radius_correction
uv_height = self.uv_height
v2 = square(self.head_1_radius)
v3 = square(self.head_2_radius)
primary_rotation = Matrix.Rotation(self.primary_angle, 4, 'Y')
secondary_rotation = Matrix.Rotation(self.primary_angle - self.secondary_angle, 4, 'Y')
v2 = [primary_rotation * (v + Vector((0, 0, self.head_1_length))) for v in v2]
v3 = [secondary_rotation * (v + Vector((0, 0, self.head_2_length))) for v in v3]
self.verts = v2 + v3
si = self.starting_index
i0, i1, i2, i3 = base_indexes
faces = [(i0, si, si + 1, i1), (i1, si + 1, si + 2, i2), (i2, si + 2, si + 3, i3), (i3, si+3, si+6, si+7), (si+4, si+5, si, i0), (si+6, si+3, si, si+5), (i3, si+7, si+4, i0)]
spin_rotation = Matrix.Rotation(self.spin, 4, 'Z')
direction_rotation = self.direction.rotation_difference(Vector((0,0,1))).to_matrix()
self.verts = [((v * spin_rotation) * direction_rotation) + self.position for v in self.verts]
self.head_1_direction = (self.verts[-5] + self.verts[-7])/2 - self.position
self.head_2_direction = (self.verts[-1] + self.verts[-3])/2 - self.position
self.verts = np.asarray([i.to_tuple() for i in self.verts])
# self.base_pos = [(v * spin_rotation) * direction_rotation + self.position for v in square(self.base_radius)]
uvs = [[(i / 4, uv_height), (i / 4, uv_height + .1*self.head_1_length / self.head_1_radius), ((i + 1) / 4, uv_height + .1*self.head_1_length / self.head_1_radius), ((i + 1) / 4, uv_height)] for i in range(3)]
uvs.extend([[(i / 4, uv_height), (i / 4, uv_height + .1*self.head_2_length / self.head_2_radius), ((i + 1) / 4, uv_height + .1*self.head_2_length / self.head_2_radius), ((i + 1) / 4, uv_height)] for i in range(4)])
if self.head_module_1 is None:
faces.append([i for i in range(si, si+4)])
uvs.append([(0, 0), (0, 1), (1, 1), (1, 0)])
if self.head_module_2 is None:
faces.append([i for i in range(si+4, si + 8)])
uvs.append([(0, 0), (0, 1), (1, 1), (1, 0)])
self.faces = np.asarray(faces)
self.uvs = np.asarray(uvs)
def link(self, module, head, verts_number):
if head ==0:
head_indexes = np.arange(self.starting_index, self.starting_index + 4)
else:
head_indexes = np.arange(self.starting_index+4, self.starting_index + 8)
module.starting_index = verts_number
spin_diff = (module.spin - self.spin) % (2*pi)
module.build(roll_indexes(head_indexes, spin_diff))
class Branch(Module):
def __init__(self, position=Vector(), direction=Vector, radius=1, length=1, head_radius=.95, resolution=0,
starting_index=0, spin=0):
Module.__init__(self, position, direction, radius, resolution, starting_index, spin)
self.type = "branch"
self.length = length
self.head_1_radius = head_radius * self.base_radius
self.head_number = 1
self.draw_base = False
# self.build()
# self.draw()
def get_head_indexes(self, head):
if head == 1:
return np.arange(4) + self.starting_index
def get_head_pos(self, head):
return self.position + self.direction * self.length
def build(self, base_indexes=np.arange(4)):
radius_correction = 1 - .25**(self.resolution+1)
self.base_radius *= radius_correction
self.head_1_radius *= radius_correction
uv_height = self.uv_height
v2 = [v + Vector((0,0, self.length)) for v in square(self.head_1_radius)]
if self.draw_base:
v2.extend([v + Vector((0,0, 0*self.length/4)) for v in square(self.base_radius)])
self.verts = v2
i0, i1, i2, i3 = base_indexes
si = self.starting_index
if self.draw_base:
i0, i1, i2, i3 = [si + 4 + i for i in range(4)]
spin_rotation = Matrix.Rotation(self.spin, 4, 'Z')
direction_rotation = self.direction.rotation_difference(Vector((0, 0, 1))).to_matrix()
self.verts = np.asarray([((v * spin_rotation) * direction_rotation + self.position).to_tuple() for v in self.verts])
# self.base_pos = [(v * spin_rotation) * direction_rotation + self.position for v in square(self.base_radius)]
m = min(base_indexes)
faces = [(i0, si, si + 1, i1), (i1, si + 1, si + 2, i2), (i2, si + 2, si + 3, i3), (i3, si + 3, si, i0)]
uvs = [[(i/4, uv_height), (i/4, uv_height + .1*self.length/self.base_radius), ((i+1)/4, uv_height + .1*self.length/self.base_radius), ((i+1)/4, uv_height)] for i in range(4)]
if self.head_module_1 is None:
faces.append([i for i in range(si, si+4)])
uvs.append([(0, 0), (0, 1), (1, 1), (1, 0)])
self.faces = np.asarray(faces)
self.uvs = np.asarray(uvs)
def link(self, module, head, verts_number):
# module.position = (self.verts[0] + self.verts[2])/2
# module.base_radius = self.head_1_radius
# module.direction = self.direction
module.starting_index = verts_number
# self.head_module_1 = module
n = len(self.verts)
head_indexes = np.arange(4) + self.starting_index
spin_diff = module.spin - self.spin
module.uv_height = self.uv_height + .1*self.length/self.base_radius
module.build(roll_indexes(head_indexes, spin_diff))
# base_verts = roll_indexes(module.base_pos, spin_diff)
# for i in range(4):
# self.verts[i] = self.verts[i]*.7 + base_verts[i]*.3
class Root(Module):
def __init__(self, position=Vector(), direction=Vector, radius=1, resolution=0, starting_index=0, spin=0):
Module.__init__(self, position, direction, radius, resolution, starting_index, spin)
self.type = "root"
self.head_number = 1
self.head_1_radius = self.base_radius
self.density_dict = dict()
def build(self):
spin_rotation = Matrix.Rotation(self.spin, 4, 'Z')
direction_rotation = self.direction.rotation_difference(Vector((0, 0, 1))).to_matrix()
self.verts = np.asarray([((v * spin_rotation) * direction_rotation + self.position).to_tuple() for v in square(self.base_radius)])
def get_head_pos(self, head):
return self.position
def link(self, module, head, verts_number):
module.starting_index = verts_number
spin_diff = module.spin - self.spin
head_indexes = np.arange(4)
module.uv_height = 0
module.build(roll_indexes(head_indexes, spin_diff))
class Transition(Module):
def __init__(self, position=Vector(), direction=Vector(), radius=1, length=1, head_radius=.95, resolution=0, starting_index=0, spin=0 ):
Module.__init__(self, position, direction, radius, resolution, starting_index, spin)
self.type = "transition"
self.head_1_radius = head_radius
self.length = length
self.head_number = 1
# print('transition')
def build(self, base_indexes=None, create_base=False):
v1 = octagon(self.base_radius)
radius_correction = 1 - .25 ** (self.resolution + 1)
self.base_radius *= radius_correction
self.head_1_radius *= radius_correction
v2 = [v + Vector((0,0, self.length)) for v in square(self.base_radius)]
# v3 = [v * self.head_1_radius + Vector((0, 0, self.length/2)) for v in [Vector((-1, -.5, 0)), Vector((1, -.5, 0)), Vector((1, .5, 0)), Vector((-1, .5, 0))]]
verts = v1 + v2
faces = np.array([[0, 1, 14, 13], [1, 2, 10, 14], [2, 3, 11, 10], [3, 4, 15, 11], [4, 5, 12, 15], [5, 6, 8, 12], [6, 7, 9, 8], [7, 0, 13, 9], [13, 14, 10, 9], [15, 12, 8, 11]])
faces = [[0, 1, 10, 9], [1,2,10], [2,3,11,10], [3,4,11], [4,5,8,11], [5,6,8], [6,7,9,8], [7,0,9]]
# faces = np.array([[0, 1, 14, 13]])
# self.faces = faces + self.starting_index
self.faces = [tuple([i + self.starting_index for i in j]) for j in faces]
# verts = [Vector(i) * self.base_radius for i in [(-0.37, 0.9, 0.0), (-0.9, 0.37, 0.0), (-0.9, -0.37, 0.0),
# (-0.37, -0.9, 0.0), (0.37, -0.9, 0.0), (0.9, -0.37, -0.0),
# (0.9, 0.37, 0.0), (0.37, 0.9, 0.0), (-0.9, -0.9, 1.38),
# (0.9, -0.9, 1.38),
# (0.9, 0.9, 1.38), (-0.9, 0.9, 1.38), (-0.93, 0.42, 0.84),
# (-0.93, -0.42, 0.84), (0.93, -0.42, 0.84), (0.93, 0.42, 0.84)]]
#
# f = [tuple([i + self.starting_index for i in j]) for j in [[6, 15, 14, 5], [2, 13, 12, 1], [8, 13, 2, 3],
# [11, 12, 13, 8], [0, 1, 12, 11], [14, 9, 4, 5],
# [10, 9, 14, 15], [6, 7, 10, 15], [4, 9, 8, 3],
# [0, 11, 10, 7]]]
spin_rotation = Matrix.Rotation(self.spin, 4, 'Z')
direction_rotation = self.direction.rotation_difference(Vector((0, 0, 1))).to_matrix()
self.verts = np.asarray([((v * spin_rotation) * direction_rotation + self.position).to_tuple() for v in verts])
def link(self, module, head, verts_number):
# module.position = (self.verts[0] + self.verts[2])/2
# module.base_radius = self.head_1_radius
# module.direction = self.direction
module.starting_index = verts_number
# self.head_module_1 = module
head_indexes = np.arange(4) + self.starting_index + 8
spin_diff = module.spin - self.spin
module.uv_height = self.uv_height + .1*self.length/self.base_radius
module.build(roll_indexes(head_indexes, spin_diff))
# base_verts = roll_indexes(module.base_pos, spin_diff)
# for i in range(4):
# self.verts[i] = self.verts[i]*.7 + base_verts[i]*.3
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/ningning166/modular_tree.git
[email protected]:ningning166/modular_tree.git
ningning166
modular_tree
modular_tree
master

搜索帮助