代码拉取完成,页面将自动刷新
import os
from compute_doa_metrics import compute_DOA_metrics
from file_utils import write_metadata_result_file, build_result_dict_from_metadata_array, write_output_result_file
from parameters import get_params
import soundfile as sf
import csv
import numpy as np
from utils import beamforming, dummy_classifier
from visualize_output import visualize_output
import pandas as pd
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Path stuff
# This parameter will define the algorithm type
preset_string = 'Q'
# Default preset: contains path to folders
params = get_params(preset_string)
# Dataset type:
dataset_type_folder = params['dataset'] + "_" + params['mode']
dataset_preset_folder = dataset_type_folder + '_' + params['preset_string']
# Get folder names before and after classification
doa_folder = params['before_classification_folder_name']
classif_folder = params['after_classification_folder_name']
# Path to results_metadata folder _before classification_; it should exist
results_metadata_doa_folder = os.path.join(params['metadata_result_folder_path'],
dataset_preset_folder,
doa_folder)
if not os.path.exists(results_metadata_doa_folder):
raise ValueError
# Path to results_metadata folder _before classification_; create it if necessary
results_metadata_classif_folder = os.path.join(params['metadata_result_folder_path'],
dataset_preset_folder,
classif_folder)
if not os.path.exists(results_metadata_classif_folder):
os.mkdir(results_metadata_classif_folder)
# Path to results_output folder _before classification_; it should exist
results_output_doa_folder = os.path.join(params['output_result_folder_path'],
dataset_preset_folder,
doa_folder)
if not os.path.exists(results_output_doa_folder):
raise ValueError
# Path to results_output folder _before classification_; create it if necessary
results_output_classif_folder = os.path.join(params['output_result_folder_path'],
dataset_preset_folder,
classif_folder)
if not os.path.exists(results_output_classif_folder):
os.mkdir(results_output_classif_folder)
# Path to audio folder
dataset_dir = params['dataset_dir']
data_folder_path = os.path.join(dataset_dir, dataset_type_folder)
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
print(' ')
print('-------------- PROCESSING FILES --------------')
print(' ')
print('Folder path: ' + data_folder_path )
# Iterate over all audio files
audio_files = [f for f in os.listdir(data_folder_path) if not f.startswith('.')]
# store ground truth info for classification
files =[]
labels = []
splits = []
irs = []
parents = []
for audio_file_name in audio_files:
# Open audio file
b_format, sr = sf.read(os.path.join(data_folder_path, audio_file_name))
# Get associated metadata file
metadata_file_name = os.path.splitext(audio_file_name)[0] + params['metadata_result_file_extension']
# This is our modified metadata result array
metadata_result_classif_array = []
# Iterate over the associated doa metadata file
with open(os.path.join(results_metadata_doa_folder, metadata_file_name), 'r') as f:
reader = csv.reader(f, delimiter=',')
counter = 0
for i, row in enumerate(reader):
# Discard the first line (just the column titles)
if i > 0:
# Get values for this sound event
if params['mode'] == 'eval':
sound_class_string = 'eval_mode'
else:
sound_class_string = row[0]
start_time_seconds = float(row[1])
end_time_seconds = float(row[2])
elevation = float(row[3])
azimuth = float(row[4])
distance = row[5]
# Slice the b_format audio to the corresponding event length
start_frame = int(np.floor(start_time_seconds * sr))
end_frame = int(np.ceil(end_time_seconds * sr))
# Steer a beam and estimate the source
beamforming_method = 'basic'
# You can try also with 'inphase', I would say there is not much difference in the non-overlapping case...
sound_event_mono = beamforming(b_format[start_frame:end_frame], azimuth, elevation,
beamforming_method)
if params['mode'] == 'eval':
filename = sound_class_string + '_' + str(start_frame) + '_' + str(end_frame) + '_' + metadata_file_name.split('.')[0] + '_c' + str(counter) + '.wav'
else:
filename = sound_class_string + '_' + str(start_frame) + '_' + str(end_frame) + '_' + metadata_file_name.split('.')[0] + '.wav'
path_to_write = os.path.join('data/mono_data/wav', params['mode'] + '_param_' + preset_string)
if not os.path.exists(path_to_write):
os.mkdir(path_to_write)
sf.write(os.path.join(path_to_write, filename), sound_event_mono, sr)
# create csv with split info for development and test based on parametric frontend
files.append(filename)
labels.append(sound_class_string)
splits.append(int(metadata_file_name.split('_')[0][-1]))
parents.append(metadata_file_name)
# vip Classify: this will need 4 models for 4 test splits in x-val in development mode
# PLUS one model for evaluation mode
class_id = dummy_classifier(sound_event_mono)
# Substitute the None for the current class, and append to the new metadata array
row[0] = class_id
metadata_result_classif_array.append(row)
if params['mode'] == 'eval':
# increase event counter within the same recording
# this ensures different filenames for the outcome of the frontend
counter += 1
# Write a new results_metadata_classif file with the modified classes
metadata_result_classif_file_name = os.path.splitext(audio_file_name)[0] + params['metadata_result_file_extension']
path_to_write = os.path.join(results_metadata_classif_folder, metadata_result_classif_file_name)
write_metadata_result_file(metadata_result_classif_array, path_to_write)
# Write a new result_output_classif file with the modified classes
output_result_classif_dict = build_result_dict_from_metadata_array(metadata_result_classif_array, params['required_window_hop'])
path_to_write = os.path.join(results_output_classif_folder, metadata_file_name)
write_output_result_file(output_result_classif_dict, path_to_write)
# save dataset_dev_mono_parametric
gt_classif = pd.DataFrame(files, columns=['fname'])
gt_classif['label'] = labels
gt_classif['split'] = splits
gt_classif['parent'] = parents
gt_csv_file_name = 'gt_' + params['mode'] + '_parametric_' + params['preset_string'] + '.csv'
gt_classif.to_csv(gt_csv_file_name, index=False)
print('EOF')
print('-------------- PROCESSING FINISHED --------------')
print(' ')
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
print('-------------- COMPUTE DOA METRICS --------------')
gt_folder = os.path.join(dataset_dir, 'metadata_'+params['mode'])
compute_DOA_metrics(gt_folder, results_output_classif_folder)
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
print('-------------- VISUALIZE OUTPUT --------------')
visualize_output(results_output_classif_folder, gt_folder, data_folder_path, params)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。