代码拉取完成,页面将自动刷新
/*
* mdadm - manage Linux "md" devices aka RAID arrays.
*
* Copyright (C) 2001-2013 Neil Brown <[email protected]>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Author: Neil Brown
* Email: <[email protected]>
*/
#include "mdadm.h"
#include "dlink.h"
#include "xmalloc.h"
#include <sys/mman.h>
#include <stddef.h>
#include <stdint.h>
#include <sys/wait.h>
#if ! defined(__BIG_ENDIAN) && ! defined(__LITTLE_ENDIAN)
#error no endian defined
#endif
#include "md_u.h"
#include "md_p.h"
int restore_backup(struct supertype *st,
struct mdinfo *content,
int working_disks,
int next_spare,
char **backup_filep,
int verbose)
{
int i;
int *fdlist;
struct mdinfo *dev;
int err;
int disk_count = next_spare + working_disks;
char *backup_file = *backup_filep;
dprintf("Called restore_backup()\n");
fdlist = xmalloc(sizeof(int) * disk_count);
enable_fds(next_spare);
for (i = 0; i < next_spare; i++)
fdlist[i] = -1;
for (dev = content->devs; dev; dev = dev->next) {
char buf[22];
int fd;
sprintf(buf, "%d:%d", dev->disk.major, dev->disk.minor);
fd = dev_open(buf, O_RDWR);
if (dev->disk.raid_disk >= 0)
fdlist[dev->disk.raid_disk] = fd;
else
fdlist[next_spare++] = fd;
}
if (!backup_file) {
backup_file = locate_backup(content->sys_name);
*backup_filep = backup_file;
}
if (st->ss->external && st->ss->recover_backup)
err = st->ss->recover_backup(st, content);
else
err = Grow_restart(st, content, fdlist, next_spare,
backup_file, verbose > 0);
while (next_spare > 0) {
next_spare--;
if (fdlist[next_spare] >= 0)
close(fdlist[next_spare]);
}
free(fdlist);
if (err) {
pr_err("Failed to restore critical section for reshape - sorry.\n");
if (!backup_file)
pr_err("Possibly you need to specify a --backup-file\n");
return 1;
}
dprintf("restore_backup() returns status OK.\n");
return 0;
}
int Grow_Add_device(char *devname, int fd, char *newdev)
{
/* Add a device to an active array.
* Currently, just extend a linear array.
* This requires writing a new superblock on the
* new device, calling the kernel to add the device,
* and if that succeeds, update the superblock on
* all other devices.
* This means that we need to *find* all other devices.
*/
struct mdinfo info;
dev_t rdev;
int nfd, fd2;
int d, nd;
struct supertype *st = NULL;
char *subarray = NULL;
if (md_get_array_info(fd, &info.array) < 0) {
pr_err("cannot get array info for %s\n", devname);
return 1;
}
if (info.array.level != -1) {
pr_err("can only add devices to linear arrays\n");
return 1;
}
st = super_by_fd(fd, &subarray);
if (!st) {
pr_err("cannot handle arrays with superblock version %d\n",
info.array.major_version);
return 1;
}
if (subarray) {
pr_err("Cannot grow linear sub-arrays yet\n");
free(subarray);
free(st);
return 1;
}
nfd = open(newdev, O_RDWR|O_EXCL|O_DIRECT);
if (nfd < 0) {
pr_err("cannot open %s\n", newdev);
free(st);
return 1;
}
if (!fstat_is_blkdev(nfd, newdev, &rdev)) {
close(nfd);
free(st);
return 1;
}
/* now check out all the devices and make sure we can read the
* superblock */
for (d=0 ; d < info.array.raid_disks ; d++) {
mdu_disk_info_t disk;
char *dv;
st->ss->free_super(st);
disk.number = d;
if (md_get_disk_info(fd, &disk) < 0) {
pr_err("cannot get device detail for device %d\n", d);
close(nfd);
free(st);
return 1;
}
dv = map_dev(disk.major, disk.minor, 1);
if (!dv) {
pr_err("cannot find device file for device %d\n", d);
close(nfd);
free(st);
return 1;
}
fd2 = dev_open(dv, O_RDWR);
if (fd2 < 0) {
pr_err("cannot open device file %s\n", dv);
close(nfd);
free(st);
return 1;
}
if (st->ss->load_super(st, fd2, NULL)) {
pr_err("cannot find super block on %s\n", dv);
close(nfd);
close(fd2);
free(st);
return 1;
}
close(fd2);
}
/* Ok, looks good. Lets update the superblock and write it out to
* newdev.
*/
info.disk.number = d;
info.disk.major = major(rdev);
info.disk.minor = minor(rdev);
info.disk.raid_disk = d;
info.disk.state = (1 << MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE);
if (st->ss->update_super(st, &info, UOPT_SPEC_LINEAR_GROW_NEW, newdev,
0, 0, NULL) != 0) {
pr_err("Preparing new metadata failed on %s\n", newdev);
close(nfd);
return 1;
}
if (st->ss->store_super(st, nfd)) {
pr_err("Cannot store new superblock on %s\n", newdev);
close(nfd);
return 1;
}
close(nfd);
if (ioctl(fd, ADD_NEW_DISK, &info.disk) != 0) {
pr_err("Cannot add new disk to this array\n");
return 1;
}
/* Well, that seems to have worked.
* Now go through and update all superblocks
*/
if (md_get_array_info(fd, &info.array) < 0) {
pr_err("cannot get array info for %s\n", devname);
return 1;
}
nd = d;
for (d=0 ; d < info.array.raid_disks ; d++) {
mdu_disk_info_t disk;
char *dv;
disk.number = d;
if (md_get_disk_info(fd, &disk) < 0) {
pr_err("cannot get device detail for device %d\n", d);
return 1;
}
dv = map_dev(disk.major, disk.minor, 1);
if (!dv) {
pr_err("cannot find device file for device %d\n", d);
return 1;
}
fd2 = dev_open(dv, O_RDWR);
if (fd2 < 0) {
pr_err("cannot open device file %s\n", dv);
return 1;
}
if (st->ss->load_super(st, fd2, NULL)) {
pr_err("cannot find super block on %s\n", dv);
close(fd);
close(fd2);
return 1;
}
info.array.raid_disks = nd+1;
info.array.nr_disks = nd+1;
info.array.active_disks = nd+1;
info.array.working_disks = nd+1;
if (st->ss->update_super(st, &info, UOPT_SPEC_LINEAR_GROW_UPDATE, dv,
0, 0, NULL) != 0) {
pr_err("Updating metadata failed on %s\n", dv);
close(fd2);
return 1;
}
if (st->ss->store_super(st, fd2)) {
pr_err("Cannot store new superblock on %s\n", dv);
close(fd2);
return 1;
}
close(fd2);
}
return 0;
}
int Grow_addbitmap(char *devname, int fd, struct context *c, struct shape *s)
{
/*
* First check that array doesn't have a bitmap
* Then create the bitmap
* Then add it
*
* For internal bitmaps, we need to check the version,
* find all the active devices, and write the bitmap block
* to all devices
*/
mdu_bitmap_file_t bmf;
mdu_array_info_t array;
struct supertype *st;
char *subarray = NULL;
int major = BITMAP_MAJOR_HI;
unsigned long long bitmapsize, array_size;
struct mdinfo *mdi;
/*
* We only ever get called if s->bitmap_file is != NULL, so this check
* is just here to quiet down static code checkers.
*/
if (!s->bitmap_file)
return 1;
if (strcmp(s->bitmap_file, "clustered") == 0)
major = BITMAP_MAJOR_CLUSTERED;
if (ioctl(fd, GET_BITMAP_FILE, &bmf) != 0) {
if (errno == ENOMEM)
pr_err("Memory allocation failure.\n");
else
pr_err("bitmaps not supported by this kernel.\n");
return 1;
}
if (bmf.pathname[0]) {
if (str_is_none(s->bitmap_file) == true) {
if (ioctl(fd, SET_BITMAP_FILE, -1) != 0) {
pr_err("failed to remove bitmap %s\n",
bmf.pathname);
return 1;
}
return 0;
}
pr_err("%s already has a bitmap (%s)\n", devname, bmf.pathname);
return 1;
}
if (md_get_array_info(fd, &array) != 0) {
pr_err("cannot get array status for %s\n", devname);
return 1;
}
if (array.state & (1 << MD_SB_BITMAP_PRESENT)) {
if (str_is_none(s->bitmap_file) == true) {
array.state &= ~(1 << MD_SB_BITMAP_PRESENT);
if (md_set_array_info(fd, &array) != 0) {
if (array.state & (1 << MD_SB_CLUSTERED))
pr_err("failed to remove clustered bitmap.\n");
else
pr_err("failed to remove internal bitmap.\n");
return 1;
}
return 0;
}
pr_err("bitmap already present on %s\n", devname);
return 1;
}
if (str_is_none(s->bitmap_file) == true) {
pr_err("no bitmap found on %s\n", devname);
return 1;
}
if (array.level <= 0) {
pr_err("Bitmaps not meaningful with level %s\n",
map_num(pers, array.level)?:"of this array");
return 1;
}
bitmapsize = array.size;
bitmapsize <<= 1;
if (get_dev_size(fd, NULL, &array_size) &&
array_size > (0x7fffffffULL << 9)) {
/* Array is big enough that we cannot trust array.size
* try other approaches
*/
bitmapsize = get_component_size(fd);
}
if (bitmapsize == 0) {
pr_err("Cannot reliably determine size of array to create bitmap - sorry.\n");
return 1;
}
if (array.level == 10) {
int ncopies;
ncopies = (array.layout & 255) * ((array.layout >> 8) & 255);
bitmapsize = bitmapsize * array.raid_disks / ncopies;
if (strcmp(s->bitmap_file, "clustered") == 0 &&
!is_near_layout_10(array.layout)) {
pr_err("only near layout is supported with clustered raid10\n");
return 1;
}
}
st = super_by_fd(fd, &subarray);
if (!st) {
pr_err("Cannot understand version %d.%d\n",
array.major_version, array.minor_version);
return 1;
}
if (subarray) {
pr_err("Cannot add bitmaps to sub-arrays yet\n");
free(subarray);
free(st);
return 1;
}
mdi = sysfs_read(fd, NULL, GET_CONSISTENCY_POLICY);
if (mdi) {
if (mdi->consistency_policy == CONSISTENCY_POLICY_PPL) {
pr_err("Cannot add bitmap to array with PPL\n");
free(mdi);
free(st);
return 1;
}
free(mdi);
}
if (strcmp(s->bitmap_file, "internal") == 0 ||
strcmp(s->bitmap_file, "clustered") == 0) {
int rv;
int d;
int offset_setable = 0;
if (st->ss->add_internal_bitmap == NULL) {
pr_err("Internal bitmaps not supported with %s metadata\n", st->ss->name);
return 1;
}
st->nodes = c->nodes;
st->cluster_name = c->homecluster;
mdi = sysfs_read(fd, NULL, GET_BITMAP_LOCATION);
if (mdi)
offset_setable = 1;
for (d = 0; d < st->max_devs; d++) {
mdu_disk_info_t disk;
char *dv;
int fd2;
disk.number = d;
if (md_get_disk_info(fd, &disk) < 0)
continue;
if (disk.major == 0 && disk.minor == 0)
continue;
if ((disk.state & (1 << MD_DISK_SYNC)) == 0)
continue;
dv = map_dev(disk.major, disk.minor, 1);
if (!dv)
continue;
if ((disk.state & (1 << MD_DISK_WRITEMOSTLY)) &&
(strcmp(s->bitmap_file, "clustered") == 0)) {
pr_err("%s disks marked write-mostly are not supported with clustered bitmap\n",devname);
free(mdi);
return 1;
}
fd2 = dev_open(dv, O_RDWR);
if (fd2 < 0)
continue;
rv = st->ss->load_super(st, fd2, NULL);
if (!rv) {
rv = st->ss->add_internal_bitmap(
st, &s->bitmap_chunk, c->delay,
s->write_behind, bitmapsize,
offset_setable, major);
if (!rv) {
st->ss->write_bitmap(st, fd2,
NodeNumUpdate);
} else {
pr_err("failed to create internal bitmap - chunksize problem.\n");
}
} else {
pr_err("failed to load super-block.\n");
}
close(fd2);
if (rv) {
free(mdi);
return 1;
}
}
if (offset_setable) {
st->ss->getinfo_super(st, mdi, NULL);
if (sysfs_init(mdi, fd, NULL)) {
pr_err("failed to initialize sysfs.\n");
free(mdi);
}
rv = sysfs_set_num_signed(mdi, NULL, "bitmap/location",
mdi->bitmap_offset);
free(mdi);
} else {
if (strcmp(s->bitmap_file, "clustered") == 0)
array.state |= (1 << MD_SB_CLUSTERED);
array.state |= (1 << MD_SB_BITMAP_PRESENT);
rv = md_set_array_info(fd, &array);
}
if (rv < 0) {
if (errno == EBUSY)
pr_err("Cannot add bitmap while array is resyncing or reshaping etc.\n");
pr_err("failed to set internal bitmap.\n");
return 1;
}
} else {
int uuid[4];
int bitmap_fd;
int d;
int max_devs = st->max_devs;
/* try to load a superblock */
for (d = 0; d < max_devs; d++) {
mdu_disk_info_t disk;
char *dv;
int fd2;
disk.number = d;
if (md_get_disk_info(fd, &disk) < 0)
continue;
if ((disk.major==0 && disk.minor == 0) ||
(disk.state & (1 << MD_DISK_REMOVED)))
continue;
dv = map_dev(disk.major, disk.minor, 1);
if (!dv)
continue;
fd2 = dev_open(dv, O_RDONLY);
if (fd2 >= 0) {
if (st->ss->load_super(st, fd2, NULL) == 0) {
close(fd2);
st->ss->uuid_from_super(st, uuid);
break;
}
close(fd2);
}
}
if (d == max_devs) {
pr_err("cannot find UUID for array!\n");
return 1;
}
if (CreateBitmap(s->bitmap_file, c->force, (char*)uuid,
s->bitmap_chunk, c->delay, s->write_behind,
bitmapsize, major)) {
return 1;
}
bitmap_fd = open(s->bitmap_file, O_RDWR);
if (bitmap_fd < 0) {
pr_err("weird: %s cannot be opened\n", s->bitmap_file);
return 1;
}
if (ioctl(fd, SET_BITMAP_FILE, bitmap_fd) < 0) {
int err = errno;
if (errno == EBUSY)
pr_err("Cannot add bitmap while array is resyncing or reshaping etc.\n");
pr_err("Cannot set bitmap file for %s: %s\n",
devname, strerror(err));
close_fd(&bitmap_fd);
return 1;
}
close_fd(&bitmap_fd);
}
return 0;
}
int Grow_consistency_policy(char *devname, int fd, struct context *c, struct shape *s)
{
struct supertype *st;
struct mdinfo *sra;
struct mdinfo *sd;
char *subarray = NULL;
int ret = 0;
char container_dev[PATH_MAX];
char buf[SYSFS_MAX_BUF_SIZE];
if (s->consistency_policy != CONSISTENCY_POLICY_RESYNC &&
s->consistency_policy != CONSISTENCY_POLICY_PPL) {
pr_err("Operation not supported for consistency policy %s\n",
map_num_s(consistency_policies, s->consistency_policy));
return 1;
}
st = super_by_fd(fd, &subarray);
if (!st)
return 1;
sra = sysfs_read(fd, NULL, GET_CONSISTENCY_POLICY|GET_LEVEL|
GET_DEVS|GET_STATE);
if (!sra) {
ret = 1;
goto free_st;
}
if (s->consistency_policy == CONSISTENCY_POLICY_PPL &&
!st->ss->write_init_ppl) {
pr_err("%s metadata does not support PPL\n", st->ss->name);
ret = 1;
goto free_info;
}
if (sra->array.level != 5) {
pr_err("Operation not supported for array level %d\n",
sra->array.level);
ret = 1;
goto free_info;
}
if (sra->consistency_policy == (unsigned)s->consistency_policy) {
pr_err("Consistency policy is already %s\n",
map_num_s(consistency_policies, s->consistency_policy));
ret = 1;
goto free_info;
} else if (sra->consistency_policy != CONSISTENCY_POLICY_RESYNC &&
sra->consistency_policy != CONSISTENCY_POLICY_PPL) {
pr_err("Current consistency policy is %s, cannot change to %s\n",
map_num_s(consistency_policies, sra->consistency_policy),
map_num_s(consistency_policies, s->consistency_policy));
ret = 1;
goto free_info;
}
if (s->consistency_policy == CONSISTENCY_POLICY_PPL) {
if (sysfs_get_str(sra, NULL, "sync_action", buf, sizeof(buf)) <= 0) {
ret = 1;
goto free_info;
} else if (strcmp(buf, "reshape\n") == 0) {
pr_err("PPL cannot be enabled when reshape is in progress\n");
ret = 1;
goto free_info;
}
}
if (subarray) {
enum update_opt update;
if (s->consistency_policy == CONSISTENCY_POLICY_PPL)
update = UOPT_PPL;
else
update = UOPT_NO_PPL;
sprintf(container_dev, "/dev/%s", st->container_devnm);
ret = Update_subarray(container_dev, subarray, update, NULL,
c->verbose);
if (ret)
goto free_info;
}
if (s->consistency_policy == CONSISTENCY_POLICY_PPL) {
struct mdinfo info;
if (subarray) {
struct mdinfo *mdi;
int cfd;
cfd = open(container_dev, O_RDWR|O_EXCL);
if (cfd < 0) {
pr_err("Failed to open %s\n", container_dev);
ret = 1;
goto free_info;
}
ret = st->ss->load_container(st, cfd, st->container_devnm);
close(cfd);
if (ret) {
pr_err("Cannot read superblock for %s\n",
container_dev);
goto free_info;
}
mdi = st->ss->container_content(st, subarray);
info = *mdi;
free(mdi);
}
for (sd = sra->devs; sd; sd = sd->next) {
int dfd;
char *devpath;
devpath = map_dev(sd->disk.major, sd->disk.minor, 0);
dfd = dev_open(devpath, O_RDWR);
if (dfd < 0) {
pr_err("Failed to open %s\n", devpath);
ret = 1;
goto free_info;
}
if (!subarray) {
ret = st->ss->load_super(st, dfd, NULL);
if (ret) {
pr_err("Failed to load super-block.\n");
close(dfd);
goto free_info;
}
ret = st->ss->update_super(st, sra, UOPT_PPL,
devname,
c->verbose, 0, NULL);
if (ret) {
close(dfd);
st->ss->free_super(st);
goto free_info;
}
st->ss->getinfo_super(st, &info, NULL);
}
ret |= sysfs_set_num(sra, sd, "ppl_sector",
info.ppl_sector);
ret |= sysfs_set_num(sra, sd, "ppl_size",
info.ppl_size);
if (ret) {
pr_err("Failed to set PPL attributes for %s\n",
sd->sys_name);
close(dfd);
st->ss->free_super(st);
goto free_info;
}
ret = st->ss->write_init_ppl(st, &info, dfd);
if (ret)
pr_err("Failed to write PPL\n");
close(dfd);
if (!subarray)
st->ss->free_super(st);
if (ret)
goto free_info;
}
}
ret = sysfs_set_str(sra, NULL, "consistency_policy",
map_num_s(consistency_policies,
s->consistency_policy));
if (ret)
pr_err("Failed to change array consistency policy\n");
free_info:
sysfs_free(sra);
free_st:
free(st);
free(subarray);
return ret;
}
/*
* When reshaping an array we might need to backup some data.
* This is written to all spares with a 'super_block' describing it.
* The superblock goes 4K from the end of the used space on the
* device.
* It if written after the backup is complete.
* It has the following structure.
*/
static struct mdp_backup_super {
char magic[16]; /* md_backup_data-1 or -2 */
__u8 set_uuid[16];
__u64 mtime;
/* start/sizes in 512byte sectors */
__u64 devstart; /* address on backup device/file of data */
__u64 arraystart;
__u64 length;
__u32 sb_csum; /* csum of preceeding bytes. */
__u32 pad1;
__u64 devstart2; /* offset in to data of second section */
__u64 arraystart2;
__u64 length2;
__u32 sb_csum2; /* csum of preceeding bytes. */
__u8 pad[512-68-32];
} __attribute__((aligned(512))) bsb, bsb2;
static __u32 bsb_csum(char *buf, int len)
{
int i;
int csum = 0;
for (i = 0; i < len; i++)
csum = (csum<<3) + buf[0];
return __cpu_to_le32(csum);
}
static int check_idle(struct supertype *st)
{
/* Check that all member arrays for this container, or the
* container of this array, are idle
*/
char *container = (st->container_devnm[0]
? st->container_devnm : st->devnm);
struct mdstat_ent *ent, *e;
int is_idle = 1;
ent = mdstat_read(0, 0);
for (e = ent ; e; e = e->next) {
if (!is_container_member(e, container))
continue;
/* frozen array is not idle*/
if (e->percent >= 0 || e->metadata_version[9] == '-') {
is_idle = 0;
break;
}
}
free_mdstat(ent);
return is_idle;
}
static int freeze_container(struct supertype *st)
{
char *container = (st->container_devnm[0]
? st->container_devnm : st->devnm);
if (!check_idle(st))
return -1;
if (block_monitor(container, 1)) {
pr_err("failed to freeze container\n");
return -2;
}
return 1;
}
static void unfreeze_container(struct supertype *st)
{
char *container = (st->container_devnm[0]
? st->container_devnm : st->devnm);
unblock_monitor(container, 1);
}
static int freeze(struct supertype *st)
{
/* Try to freeze resync/rebuild on this array/container.
* Return -1 if the array is busy,
* return -2 container cannot be frozen,
* return 0 if this kernel doesn't support 'frozen'
* return 1 if it worked.
*/
if (st->ss->external)
return freeze_container(st);
else {
struct mdinfo *sra = sysfs_read(-1, st->devnm, GET_VERSION);
int err;
char buf[SYSFS_MAX_BUF_SIZE];
if (!sra)
return -1;
/* Need to clear any 'read-auto' status */
if (sysfs_get_str(sra, NULL, "array_state", buf, sizeof(buf)) > 0 &&
strncmp(buf, "read-auto", 9) == 0)
sysfs_set_str(sra, NULL, "array_state", "clean");
err = sysfs_freeze_array(sra);
sysfs_free(sra);
return err;
}
}
static void unfreeze(struct supertype *st)
{
if (st->ss->external)
return unfreeze_container(st);
else {
struct mdinfo *sra = sysfs_read(-1, st->devnm, GET_VERSION);
char buf[SYSFS_MAX_BUF_SIZE];
if (sra &&
sysfs_get_str(sra, NULL, "sync_action", buf, sizeof(buf)) > 0 &&
strcmp(buf, "frozen\n") == 0)
sysfs_set_str(sra, NULL, "sync_action", "idle");
sysfs_free(sra);
}
}
static void wait_reshape(struct mdinfo *sra)
{
int fd = sysfs_get_fd(sra, NULL, "sync_action");
char action[SYSFS_MAX_BUF_SIZE];
if (fd < 0)
return;
while (sysfs_fd_get_str(fd, action, sizeof(action)) > 0 &&
strncmp(action, "reshape", 7) == 0)
sysfs_wait(fd, NULL);
close(fd);
}
static int reshape_super(struct supertype *st, struct shape *shape, struct context *c)
{
/* nothing extra to check in the native case */
if (!st->ss->external)
return 0;
if (!st->ss->reshape_super || !st->ss->manage_reshape) {
pr_err("%s metadata does not support reshape\n",
st->ss->name);
return 1;
}
return st->ss->reshape_super(st, shape, c);
}
/**
* reshape_super_size() - Reshape array, size only.
*
* @st: supertype.
* @devname: device name.
* @size: component size.
* @dir metadata changes direction
* Returns: 0 on success, 1 otherwise.
*
* This function is solely used to change size of the volume.
* Setting size is not valid for container.
* Size is only change that can be rolled back, thus the @dir param.
*/
static int reshape_super_size(struct supertype *st, char *devname,
unsigned long long size, change_dir_t direction,
struct context *c)
{
struct shape shape = {0};
shape.level = UnSet;
shape.layout = UnSet;
shape.delta_disks = UnSet;
shape.dev = devname;
shape.size = size;
shape.direction = direction;
return reshape_super(st, &shape, c);
}
/**
* reshape_super_non_size() - Reshape array, non size changes.
*
* @st: supertype.
* @devname: device name.
* @info: superblock info.
* Returns: 0 on success, 1 otherwise.
*
* This function is used for any external array changes but size.
* It handles both volumes and containers.
* For changes other than size, rollback is not possible.
*/
static int reshape_super_non_size(struct supertype *st, char *devname,
struct mdinfo *info, struct context *c)
{
struct shape shape = {0};
/* Size already set to zero, not updating size */
shape.level = info->new_level;
shape.layout = info->new_layout;
shape.chunk = info->new_chunk;
shape.raiddisks = info->array.raid_disks;
shape.delta_disks = info->delta_disks;
shape.dev = devname;
/* Rollback not possible for non size changes */
shape.direction = APPLY_METADATA_CHANGES;
return reshape_super(st, &shape, c);
}
static void sync_metadata(struct supertype *st)
{
if (st->ss->external) {
if (st->update_tail) {
flush_metadata_updates(st);
st->update_tail = &st->updates;
} else
st->ss->sync_metadata(st);
}
}
static int subarray_set_num(char *container, struct mdinfo *sra, char *name, int n)
{
/* when dealing with external metadata subarrays we need to be
* prepared to handle EAGAIN. The kernel may need to wait for
* mdmon to mark the array active so the kernel can handle
* allocations/writeback when preparing the reshape action
* (md_allow_write()). We temporarily disable safe_mode_delay
* to close a race with the array_state going clean before the
* next write to raid_disks / stripe_cache_size
*/
char safe[SYSFS_MAX_BUF_SIZE];
int rc;
/* only 'raid_disks' and 'stripe_cache_size' trigger md_allow_write */
if (!container ||
(strcmp(name, "raid_disks") != 0 &&
strcmp(name, "stripe_cache_size") != 0))
return sysfs_set_num(sra, NULL, name, n);
rc = sysfs_get_str(sra, NULL, "safe_mode_delay", safe, sizeof(safe));
if (rc <= 0)
return -1;
sysfs_set_num(sra, NULL, "safe_mode_delay", 0);
rc = sysfs_set_num(sra, NULL, name, n);
if (rc < 0 && errno == EAGAIN) {
ping_monitor(container);
/* if we get EAGAIN here then the monitor is not active
* so stop trying
*/
rc = sysfs_set_num(sra, NULL, name, n);
}
sysfs_set_str(sra, NULL, "safe_mode_delay", safe);
return rc;
}
int start_reshape(struct mdinfo *sra, int already_running,
int before_data_disks, int data_disks, struct supertype *st)
{
int err;
unsigned long long sync_max_to_set;
sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
err = sysfs_set_num(sra, NULL, "suspend_hi", sra->reshape_progress);
err = err ?: sysfs_set_num(sra, NULL, "suspend_lo",
sra->reshape_progress);
if (before_data_disks <= data_disks)
sync_max_to_set = sra->reshape_progress / data_disks;
else
sync_max_to_set = (sra->component_size * data_disks
- sra->reshape_progress) / data_disks;
if (!already_running)
sysfs_set_num(sra, NULL, "sync_min", sync_max_to_set);
if (st->ss->external)
err = err ?: sysfs_set_num(sra, NULL, "sync_max", sync_max_to_set);
else
err = err ?: sysfs_set_str(sra, NULL, "sync_max", "max");
if (!already_running && err == 0) {
int cnt = 5;
do {
err = sysfs_set_str(sra, NULL, "sync_action",
"reshape");
if (err)
sleep_for(1, 0, true);
} while (err && errno == EBUSY && cnt-- > 0);
}
return err;
}
void abort_reshape(struct mdinfo *sra)
{
sysfs_set_str(sra, NULL, "sync_action", "idle");
/*
* Prior to kernel commit: 23ddff3792f6 ("md: allow suspend_lo and
* suspend_hi to decrease as well as increase.")
* you could only increase suspend_{lo,hi} unless the region they
* covered was empty. So to reset to 0, you need to push suspend_lo
* up past suspend_hi first. So to maximize the chance of mdadm
* working on all kernels, we want to keep doing that.
*/
sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
sysfs_set_num(sra, NULL, "suspend_hi", 0);
sysfs_set_num(sra, NULL, "suspend_lo", 0);
sysfs_set_num(sra, NULL, "sync_min", 0);
// It isn't safe to reset sync_max as we aren't monitoring.
// Array really should be stopped at this point.
}
int remove_disks_for_takeover(struct supertype *st,
struct mdinfo *sra,
int layout)
{
int nr_of_copies;
struct mdinfo *remaining;
int slot;
if (st->ss->external) {
int rv = 0;
struct mdinfo *arrays = st->ss->container_content(st, NULL);
/*
* containter_content returns list of arrays in container
* If arrays->next is not NULL it means that there are
* 2 arrays in container and operation should be blocked
*/
if (arrays) {
if (arrays->next)
rv = 1;
sysfs_free(arrays);
if (rv) {
pr_err("Error. Cannot perform operation on %s- for this operation "
"it MUST be single array in container\n", st->devnm);
return rv;
}
}
}
if (sra->array.level == 10)
nr_of_copies = layout & 0xff;
else if (sra->array.level == 1)
nr_of_copies = sra->array.raid_disks;
else
return 1;
remaining = sra->devs;
sra->devs = NULL;
/* for each 'copy', select one device and remove from the list. */
for (slot = 0; slot < sra->array.raid_disks; slot += nr_of_copies) {
struct mdinfo **diskp;
int found = 0;
/* Find a working device to keep */
for (diskp = &remaining; *diskp ; diskp = &(*diskp)->next) {
struct mdinfo *disk = *diskp;
if (disk->disk.raid_disk < slot)
continue;
if (disk->disk.raid_disk >= slot + nr_of_copies)
continue;
if (disk->disk.state & (1<<MD_DISK_REMOVED))
continue;
if (disk->disk.state & (1<<MD_DISK_FAULTY))
continue;
if (!(disk->disk.state & (1<<MD_DISK_SYNC)))
continue;
/* We have found a good disk to use! */
*diskp = disk->next;
disk->next = sra->devs;
sra->devs = disk;
found = 1;
break;
}
if (!found)
break;
}
if (slot < sra->array.raid_disks) {
/* didn't find all slots */
struct mdinfo **e;
e = &remaining;
while (*e)
e = &(*e)->next;
*e = sra->devs;
sra->devs = remaining;
return 1;
}
/* Remove all 'remaining' devices from the array */
while (remaining) {
struct mdinfo *sd = remaining;
remaining = sd->next;
sysfs_set_str(sra, sd, "state", "faulty");
sysfs_set_str(sra, sd, "slot", STR_COMMON_NONE);
/* for external metadata disks should be removed in mdmon */
if (!st->ss->external)
sysfs_set_str(sra, sd, "state", "remove");
sd->disk.state |= (1<<MD_DISK_REMOVED);
sd->disk.state &= ~(1<<MD_DISK_SYNC);
sd->next = sra->devs;
sra->devs = sd;
}
return 0;
}
void reshape_free_fdlist(int *fdlist,
unsigned long long *offsets,
int size)
{
int i;
for (i = 0; i < size; i++)
if (fdlist[i] >= 0)
close(fdlist[i]);
free(fdlist);
free(offsets);
}
int reshape_prepare_fdlist(char *devname,
struct mdinfo *sra,
int raid_disks,
int nrdisks,
unsigned long blocks,
char *backup_file,
int *fdlist,
unsigned long long *offsets)
{
int d = 0;
struct mdinfo *sd;
enable_fds(nrdisks);
for (d = 0; d <= nrdisks; d++)
fdlist[d] = -1;
d = raid_disks;
for (sd = sra->devs; sd; sd = sd->next) {
if (sd->disk.state & (1<<MD_DISK_FAULTY))
continue;
if (sd->disk.state & (1<<MD_DISK_SYNC) &&
sd->disk.raid_disk < raid_disks) {
char *dn = map_dev(sd->disk.major, sd->disk.minor, 1);
fdlist[sd->disk.raid_disk] = dev_open(dn, O_RDONLY);
offsets[sd->disk.raid_disk] = sd->data_offset*512;
if (fdlist[sd->disk.raid_disk] < 0) {
pr_err("%s: cannot open component %s\n",
devname, dn ? dn : "-unknown-");
d = -1;
goto release;
}
} else if (backup_file == NULL) {
/* spare */
char *dn = map_dev(sd->disk.major, sd->disk.minor, 1);
fdlist[d] = dev_open(dn, O_RDWR);
offsets[d] = (sd->data_offset + sra->component_size - blocks - 8)*512;
if (fdlist[d] < 0) {
pr_err("%s: cannot open component %s\n",
devname, dn ? dn : "-unknown-");
d = -1;
goto release;
}
d++;
}
}
release:
return d;
}
int reshape_open_backup_file(char *backup_file,
int fd,
char *devname,
long blocks,
int *fdlist,
unsigned long long *offsets,
char *sys_name,
int restart)
{
/* Return 1 on success, 0 on any form of failure */
/* need to check backup file is large enough */
char buf[512];
struct stat stb;
unsigned int dev;
int i;
*fdlist = open(backup_file, O_RDWR|O_CREAT|(restart ? O_TRUNC : O_EXCL),
S_IRUSR | S_IWUSR);
*offsets = 8 * 512;
if (*fdlist < 0) {
pr_err("%s: cannot create backup file %s: %s\n",
devname, backup_file, strerror(errno));
return 0;
}
/* Guard against backup file being on array device.
* If array is partitioned or if LVM etc is in the
* way this will not notice, but it is better than
* nothing.
*/
if (fstat(*fdlist, &stb) != 0)
goto error;
dev = stb.st_dev;
if (fstat(fd, &stb) != 0)
goto error;
if (stb.st_rdev == dev) {
pr_err("backup file must NOT be on the array being reshaped.\n");
goto error;
}
memset(buf, 0, 512);
for (i=0; i < blocks + 8 ; i++) {
if (write(*fdlist, buf, 512) != 512) {
pr_err("%s: cannot create backup file %s: %s\n",
devname, backup_file, strerror(errno));
return 0;
}
}
if (fsync(*fdlist) != 0) {
pr_err("%s: cannot create backup file %s: %s\n",
devname, backup_file, strerror(errno));
return 0;
}
if (!restart && strncmp(backup_file, MAP_DIR, strlen(MAP_DIR)) != 0) {
char *bu = make_backup(sys_name);
if (symlink(backup_file, bu))
pr_err("Recording backup file in " MAP_DIR " failed: %s\n",
strerror(errno));
free(bu);
}
return 1;
error:
close(*fdlist);
return 0;
}
unsigned long compute_backup_blocks(int nchunk, int ochunk,
unsigned int ndata, unsigned int odata)
{
unsigned long a, b, blocks;
/* So how much do we need to backup.
* We need an amount of data which is both a whole number of
* old stripes and a whole number of new stripes.
* So LCM for (chunksize*datadisks).
*/
a = (ochunk/512) * odata;
b = (nchunk/512) * ndata;
/* Find GCD */
a = GCD(a, b);
/* LCM == product / GCD */
blocks = (unsigned long)(ochunk/512) * (unsigned long)(nchunk/512) *
odata * ndata / a;
return blocks;
}
char *analyse_change(char *devname, struct mdinfo *info, struct reshape *re)
{
/* Based on the current array state in info->array and
* the changes in info->new_* etc, determine:
* - whether the change is possible
* - Intermediate level/raid_disks/layout
* - whether a restriping reshape is needed
* - number of sectors in minimum change unit. This
* will cover a whole number of stripes in 'before' and
* 'after'.
*
* Return message if the change should be rejected
* NULL if the change can be achieved
*
* This can be called as part of starting a reshape, or
* when assembling an array that is undergoing reshape.
*/
int near, far, offset, copies;
int new_disks;
int old_chunk, new_chunk;
/* delta_parity records change in number of devices
* caused by level change
*/
int delta_parity = 0;
memset(re, 0, sizeof(*re));
/* If a new level not explicitly given, we assume no-change */
if (info->new_level == UnSet)
info->new_level = info->array.level;
if (info->new_chunk)
switch (info->new_level) {
case 0:
case 4:
case 5:
case 6:
case 10:
/* chunk size is meaningful, must divide component_size
* evenly
*/
if (info->component_size % (info->new_chunk/512)) {
unsigned long long shrink = info->component_size;
shrink &= ~(unsigned long long)(info->new_chunk/512-1);
pr_err("New chunk size (%dK) does not evenly divide device size (%lluk)\n",
info->new_chunk/1024, info->component_size/2);
pr_err("After shrinking any filesystem, \"mdadm --grow %s --size %llu\"\n",
devname, shrink/2);
pr_err("will shrink the array so the given chunk size would work.\n");
return "";
}
break;
default:
return "chunk size not meaningful for this level";
}
else
info->new_chunk = info->array.chunk_size;
switch (info->array.level) {
default:
return "No reshape is possibly for this RAID level";
case LEVEL_LINEAR:
if (info->delta_disks != UnSet)
return "Only --add is supported for LINEAR, setting --raid-disks is not needed";
else
return "Only --add is supported for LINEAR, other --grow options are not meaningful";
case 1:
/* RAID1 can convert to RAID1 with different disks, or
* raid5 with 2 disks, or
* raid0 with 1 disk
*/
if (info->new_level > 1 && (info->component_size & 7))
return "Cannot convert RAID1 of this size - reduce size to multiple of 4K first.";
if (info->new_level == 0) {
if (info->delta_disks != UnSet &&
info->delta_disks != 0)
return "Cannot change number of disks with RAID1->RAID0 conversion";
re->level = 0;
re->before.data_disks = 1;
re->after.data_disks = 1;
return NULL;
}
if (info->new_level == 1) {
if (info->delta_disks == UnSet)
/* Don't know what to do */
return "no change requested for Growing RAID1";
re->level = 1;
return NULL;
}
if (info->array.raid_disks != 2 && info->new_level == 5)
return "Can only convert a 2-device array to RAID5";
if (info->array.raid_disks == 2 && info->new_level == 5) {
re->level = 5;
re->before.data_disks = 1;
if (info->delta_disks != UnSet &&
info->delta_disks != 0)
re->after.data_disks = 1 + info->delta_disks;
else
re->after.data_disks = 1;
if (re->after.data_disks < 1)
return "Number of disks too small for RAID5";
re->before.layout = ALGORITHM_LEFT_SYMMETRIC;
info->array.chunk_size = 65536;
break;
}
/* Could do some multi-stage conversions, but leave that to
* later.
*/
return "Impossibly level change request for RAID1";
case 10:
/* RAID10 can be converted from near mode to
* RAID0 by removing some devices.
* It can also be reshaped if the kernel supports
* new_data_offset.
*/
switch (info->new_level) {
case 0:
if ((info->array.layout & ~0xff) != 0x100)
return "Cannot Grow RAID10 with far/offset layout";
/*
* number of devices must be multiple of
* number of copies
*/
if (info->array.raid_disks %
(info->array.layout & 0xff))
return "RAID10 layout too complex for Grow operation";
new_disks = (info->array.raid_disks /
(info->array.layout & 0xff));
if (info->delta_disks == UnSet)
info->delta_disks = (new_disks
- info->array.raid_disks);
if (info->delta_disks !=
new_disks - info->array.raid_disks)
return "New number of raid-devices impossible for RAID10";
if (info->new_chunk &&
info->new_chunk != info->array.chunk_size)
return "Cannot change chunk-size with RAID10 Grow";
/* looks good */
re->level = 0;
re->before.data_disks = new_disks;
re->after.data_disks = re->before.data_disks;
return NULL;
case 10:
near = info->array.layout & 0xff;
far = (info->array.layout >> 8) & 0xff;
offset = info->array.layout & 0x10000;
if (far > 1 && !offset)
return "Cannot reshape RAID10 in far-mode";
copies = near * far;
old_chunk = info->array.chunk_size * far;
if (info->new_layout == UnSet)
info->new_layout = info->array.layout;
else {
near = info->new_layout & 0xff;
far = (info->new_layout >> 8) & 0xff;
offset = info->new_layout & 0x10000;
if (far > 1 && !offset)
return "Cannot reshape RAID10 to far-mode";
if (near * far != copies)
return "Cannot change number of copies when reshaping RAID10";
}
if (info->delta_disks == UnSet)
info->delta_disks = 0;
new_disks = (info->array.raid_disks +
info->delta_disks);
new_chunk = info->new_chunk * far;
re->level = 10;
re->before.layout = info->array.layout;
re->before.data_disks = info->array.raid_disks;
re->after.layout = info->new_layout;
re->after.data_disks = new_disks;
/* For RAID10 we don't do backup but do allow reshape,
* so set backup_blocks to INVALID_SECTORS rather than
* zero.
* And there is no need to synchronise stripes on both
* 'old' and 'new'. So the important
* number is the minimum data_offset difference
* which is the larger of (offset copies * chunk).
*/
re->backup_blocks = INVALID_SECTORS;
re->min_offset_change = max(old_chunk, new_chunk) / 512;
if (new_disks < re->before.data_disks &&
info->space_after < re->min_offset_change)
/* Reduce component size by one chunk */
re->new_size = (info->component_size -
re->min_offset_change);
else
re->new_size = info->component_size;
re->new_size = re->new_size * new_disks / copies;
return NULL;
default:
return "RAID10 can only be changed to RAID0";
}
case 0:
/* RAID0 can be converted to RAID10, or to RAID456 */
if (info->new_level == 10) {
if (info->new_layout == UnSet &&
info->delta_disks == UnSet) {
/* Assume near=2 layout */
info->new_layout = 0x102;
info->delta_disks = info->array.raid_disks;
}
if (info->new_layout == UnSet) {
int copies = 1 + (info->delta_disks
/ info->array.raid_disks);
if (info->array.raid_disks * (copies-1) !=
info->delta_disks)
return "Impossible number of devices for RAID0->RAID10";
info->new_layout = 0x100 + copies;
}
if (info->delta_disks == UnSet) {
int copies = info->new_layout & 0xff;
if (info->new_layout != 0x100 + copies)
return "New layout impossible for RAID0->RAID10";;
info->delta_disks = (copies - 1) *
info->array.raid_disks;
}
if (info->new_chunk &&
info->new_chunk != info->array.chunk_size)
return "Cannot change chunk-size with RAID0->RAID10";
/* looks good */
re->level = 10;
re->before.data_disks = (info->array.raid_disks +
info->delta_disks);
re->after.data_disks = re->before.data_disks;
re->before.layout = info->new_layout;
return NULL;
}
/* RAID0 can also covert to RAID0/4/5/6 by first converting to
* a raid4 style layout of the final level.
*/
switch (info->new_level) {
case 4:
delta_parity = 1;
case 0:
re->level = 4;
re->before.layout = 0;
break;
case 5:
delta_parity = 1;
re->level = 5;
re->before.layout = ALGORITHM_PARITY_N;
if (info->new_layout == UnSet)
info->new_layout = map_name(r5layout, "default");
break;
case 6:
delta_parity = 2;
re->level = 6;
re->before.layout = ALGORITHM_PARITY_N;
if (info->new_layout == UnSet)
info->new_layout = map_name(r6layout, "default");
break;
default:
return "Impossible level change requested";
}
re->before.data_disks = info->array.raid_disks;
/* determining 'after' layout happens outside this 'switch' */
break;
case 4:
info->array.layout = ALGORITHM_PARITY_N;
case 5:
switch (info->new_level) {
case 0:
delta_parity = -1;
case 4:
re->level = info->array.level;
re->before.data_disks = info->array.raid_disks - 1;
re->before.layout = info->array.layout;
break;
case 5:
re->level = 5;
re->before.data_disks = info->array.raid_disks - 1;
re->before.layout = info->array.layout;
break;
case 6:
delta_parity = 1;
re->level = 6;
re->before.data_disks = info->array.raid_disks - 1;
switch (info->array.layout) {
case ALGORITHM_LEFT_ASYMMETRIC:
re->before.layout = ALGORITHM_LEFT_ASYMMETRIC_6;
break;
case ALGORITHM_RIGHT_ASYMMETRIC:
re->before.layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
break;
case ALGORITHM_LEFT_SYMMETRIC:
re->before.layout = ALGORITHM_LEFT_SYMMETRIC_6;
break;
case ALGORITHM_RIGHT_SYMMETRIC:
re->before.layout = ALGORITHM_RIGHT_SYMMETRIC_6;
break;
case ALGORITHM_PARITY_0:
re->before.layout = ALGORITHM_PARITY_0_6;
break;
case ALGORITHM_PARITY_N:
re->before.layout = ALGORITHM_PARITY_N_6;
break;
default:
return "Cannot convert an array with this layout";
}
break;
case 1:
if (info->array.raid_disks != 2)
return "Can only convert a 2-device array to RAID1";
if (info->delta_disks != UnSet &&
info->delta_disks != 0)
return "Cannot set raid_disk when converting RAID5->RAID1";
re->level = 1;
info->new_chunk = 0;
return NULL;
default:
return "Impossible level change requested";
}
break;
case 6:
switch (info->new_level) {
case 4:
case 5:
delta_parity = -1;
case 6:
re->level = 6;
re->before.data_disks = info->array.raid_disks - 2;
re->before.layout = info->array.layout;
break;
default:
return "Impossible level change requested";
}
break;
}
/* If we reached here then it looks like a re-stripe is
* happening. We have determined the intermediate level
* and initial raid_disks/layout and stored these in 're'.
*
* We need to deduce the final layout that can be atomically
* converted to the end state.
*/
switch (info->new_level) {
case 0:
/* We can only get to RAID0 from RAID4 or RAID5
* with appropriate layout and one extra device
*/
if (re->level != 4 && re->level != 5)
return "Cannot covert to RAID0 from this level";
switch (re->level) {
case 4:
re->before.layout = 0;
re->after.layout = 0;
break;
case 5:
re->after.layout = ALGORITHM_PARITY_N;
break;
}
break;
case 4:
/* We can only get to RAID4 from RAID5 */
if (re->level != 4 && re->level != 5)
return "Cannot convert to RAID4 from this level";
switch (re->level) {
case 4:
re->after.layout = 0;
break;
case 5:
re->after.layout = ALGORITHM_PARITY_N;
break;
}
break;
case 5:
/* We get to RAID5 from RAID5 or RAID6 */
if (re->level != 5 && re->level != 6)
return "Cannot convert to RAID5 from this level";
switch (re->level) {
case 5:
if (info->new_layout == UnSet)
re->after.layout = re->before.layout;
else
re->after.layout = info->new_layout;
break;
case 6:
if (info->new_layout == UnSet)
info->new_layout = re->before.layout;
/* after.layout needs to be raid6 version of new_layout */
if (info->new_layout == ALGORITHM_PARITY_N)
re->after.layout = ALGORITHM_PARITY_N;
else {
char layout[40];
char *ls = map_num(r5layout, info->new_layout);
int l;
if (ls) {
/* Current RAID6 layout has a RAID5
* equivalent - good
*/
snprintf(layout, 40, "%s-6", ls);
l = map_name(r6layout, layout);
if (l == UnSet)
return "Cannot find RAID6 layout to convert to";
} else {
/* Current RAID6 has no equivalent.
* If it is already a '-6' layout we
* can leave it unchanged, else we must
* fail
*/
ls = map_num(r6layout,
info->new_layout);
if (!ls ||
strcmp(ls+strlen(ls)-2, "-6") != 0)
return "Please specify new layout";
l = info->new_layout;
}
re->after.layout = l;
}
}
break;
case 6:
/* We must already be at level 6 */
if (re->level != 6)
return "Impossible level change";
if (info->new_layout == UnSet)
re->after.layout = info->array.layout;
else
re->after.layout = info->new_layout;
break;
default:
return "Impossible level change requested";
}
if (info->delta_disks == UnSet)
info->delta_disks = delta_parity;
re->after.data_disks =
(re->before.data_disks + info->delta_disks - delta_parity);
switch (re->level) {
case 6:
re->parity = 2;
break;
case 4:
case 5:
re->parity = 1;
break;
default:
re->parity = 0;
break;
}
/* So we have a restripe operation, we need to calculate the number
* of blocks per reshape operation.
*/
re->new_size = info->component_size * re->before.data_disks;
if (info->new_chunk == 0)
info->new_chunk = info->array.chunk_size;
if (re->after.data_disks == re->before.data_disks &&
re->after.layout == re->before.layout &&
info->new_chunk == info->array.chunk_size) {
/* Nothing to change, can change level immediately. */
re->level = info->new_level;
re->backup_blocks = 0;
return NULL;
}
if (re->after.data_disks == 1 && re->before.data_disks == 1) {
/* chunk and layout changes make no difference */
re->level = info->new_level;
re->backup_blocks = 0;
return NULL;
}
re->backup_blocks = compute_backup_blocks(
info->new_chunk, info->array.chunk_size,
re->after.data_disks, re->before.data_disks);
re->min_offset_change = re->backup_blocks / re->before.data_disks;
re->new_size = info->component_size * re->after.data_disks;
return NULL;
}
static int set_array_size(struct supertype *st, struct mdinfo *sra,
char *text_version)
{
struct mdinfo *info;
char *subarray;
int ret_val = -1;
if ((st == NULL) || (sra == NULL))
return ret_val;
if (text_version == NULL)
text_version = sra->text_version;
subarray = strchr(text_version + 1, '/')+1;
info = st->ss->container_content(st, subarray);
if (info) {
unsigned long long current_size = 0;
unsigned long long new_size = info->custom_array_size/2;
if (sysfs_get_ll(sra, NULL, "array_size", ¤t_size) == 0 &&
new_size > current_size) {
if (sysfs_set_num(sra, NULL, "array_size", new_size)
< 0)
dprintf("Error: Cannot set array size");
else {
ret_val = 0;
dprintf("Array size changed");
}
dprintf_cont(" from %llu to %llu.\n",
current_size, new_size);
}
sysfs_free(info);
} else
dprintf("Error: set_array_size(): info pointer in NULL\n");
return ret_val;
}
static int reshape_array(char *container, int fd, char *devname,
struct supertype *st, struct mdinfo *info,
int force, struct mddev_dev *devlist,
unsigned long long data_offset,
char *backup_file, int verbose, int forked,
int restart, int freeze_reshape);
static int reshape_container(char *container, char *devname,
int mdfd,
struct supertype *st,
struct mdinfo *info,
struct context *c,
int forked, int restart);
/**
* prepare_external_reshape() - prepares update on external metadata if supported.
* @devname: Device name.
* @subarray: Subarray.
* @st: Supertype.
* @container: Container.
* @cfd: Container file descriptor.
*
* Function checks that the requested reshape is supported on external metadata,
* and performs an initial check that the container holds the pre-requisite
* spare devices (mdmon owns final validation).
*
* Return: 0 on success, else 1
*/
static int prepare_external_reshape(char *devname, char *subarray,
struct supertype *st, char *container,
const int cfd)
{
struct mdinfo *cc = NULL;
struct mdinfo *content = NULL;
if (st->ss->load_container(st, cfd, NULL)) {
pr_err("Cannot read superblock for %s\n", devname);
return 1;
}
if (!st->ss->container_content)
return 1;
cc = st->ss->container_content(st, subarray);
for (content = cc; content ; content = content->next) {
/*
* check if reshape is allowed based on metadata
* indications stored in content.array.status
*/
if (is_bit_set(&content->array.state, MD_SB_BLOCK_VOLUME) ||
is_bit_set(&content->array.state, MD_SB_BLOCK_CONTAINER_RESHAPE)) {
pr_err("Cannot reshape arrays in container with unsupported metadata: %s(%s)\n",
devname, container);
goto error;
}
if (content->consistency_policy == CONSISTENCY_POLICY_PPL) {
pr_err("Operation not supported when ppl consistency policy is enabled\n");
goto error;
}
if (content->consistency_policy == CONSISTENCY_POLICY_BITMAP) {
pr_err("Operation not supported when write-intent bitmap consistency policy is enabled\n");
goto error;
}
}
sysfs_free(cc);
if (mdmon_running(container))
st->update_tail = &st->updates;
return 0;
error:
sysfs_free(cc);
return 1;
}
int Grow_reshape(char *devname, int fd,
struct mddev_dev *devlist,
struct context *c, struct shape *s)
{
/* Make some changes in the shape of an array.
* The kernel must support the change.
*
* There are three different changes. Each can trigger
* a resync or recovery so we freeze that until we have
* requested everything (if kernel supports freezing - 2.6.30).
* The steps are:
* - change size (i.e. component_size)
* - change level
* - change layout/chunksize/ndisks
*
* The last can require a reshape. It is different on different
* levels so we need to check the level before actioning it.
* Some times the level change needs to be requested after the
* reshape (e.g. raid6->raid5, raid5->raid0)
*
*/
struct mdu_array_info_s array;
int rv = 0;
struct supertype *st;
char *subarray = NULL;
int frozen = 0;
int changed = 0;
char *container = NULL;
int cfd = -1;
struct mddev_dev *dv;
int added_disks;
struct mdinfo info;
struct mdinfo *sra = NULL;
if (md_get_array_info(fd, &array) < 0) {
pr_err("%s is not an active md array - aborting\n",
devname);
return 1;
}
if (s->level != UnSet && s->chunk) {
pr_err("Cannot change array level in the same operation as changing chunk size.\n");
return 1;
}
if (s->data_offset != INVALID_SECTORS && array.level != 10 &&
(array.level < 4 || array.level > 6)) {
pr_err("--grow --data-offset not yet supported\n");
return 1;
}
if (s->size > 0 &&
(s->chunk || s->level!= UnSet || s->layout_str || s->raiddisks)) {
pr_err("cannot change component size at the same time as other changes.\n"
" Change size first, then check data is intact before making other changes.\n");
return 1;
}
if (array.level > 1 && s->size > 1 &&
(unsigned long long) (array.chunk_size / 1024) > s->size) {
pr_err("component size must be larger than chunk size.\n");
return 1;
}
st = super_by_fd(fd, &subarray);
if (!st) {
pr_err("Unable to determine metadata format for %s\n", devname);
return 1;
}
if (s->raiddisks > st->max_devs) {
pr_err("Cannot increase raid-disks on this array beyond %d\n", st->max_devs);
return 1;
}
if (s->level == 0 && (array.state & (1 << MD_SB_BITMAP_PRESENT)) &&
!(array.state & (1 << MD_SB_CLUSTERED)) && !st->ss->external) {
array.state &= ~(1 << MD_SB_BITMAP_PRESENT);
if (md_set_array_info(fd, &array) != 0) {
pr_err("failed to remove internal bitmap.\n");
return 1;
}
}
if (st->ss->external) {
if (subarray) {
container = st->container_devnm;
cfd = open_dev_excl(st->container_devnm);
} else {
container = st->devnm;
close(fd);
cfd = open_dev_excl(st->devnm);
fd = cfd;
}
if (cfd < 0) {
pr_err("Unable to open container for %s\n", devname);
free(subarray);
return 1;
}
rv = prepare_external_reshape(devname, subarray, st,
container, cfd);
if (rv > 0) {
free(subarray);
close(cfd);
goto release;
}
if (s->raiddisks && subarray) {
pr_err("--raid-devices operation can be performed on a container only\n");
close(cfd);
free(subarray);
return 1;
}
}
added_disks = 0;
for (dv = devlist; dv; dv = dv->next)
added_disks++;
if (s->raiddisks > array.raid_disks &&
array.spare_disks + added_disks <
(s->raiddisks - array.raid_disks) &&
!c->force) {
pr_err("Need %d spare%s to avoid degraded array, and only have %d.\n"
" Use --force to over-ride this check.\n",
s->raiddisks - array.raid_disks,
s->raiddisks - array.raid_disks == 1 ? "" : "s",
array.spare_disks + added_disks);
return 1;
}
sra = sysfs_read(fd, NULL, GET_LEVEL | GET_DISKS | GET_DEVS |
GET_STATE | GET_VERSION);
if (sra) {
if (st->ss->external && subarray == NULL) {
array.level = LEVEL_CONTAINER;
sra->array.level = LEVEL_CONTAINER;
}
} else {
pr_err("failed to read sysfs parameters for %s\n",
devname);
return 1;
}
frozen = freeze(st);
if (frozen < -1) {
/* freeze() already spewed the reason */
sysfs_free(sra);
return 1;
} else if (frozen < 0) {
pr_err("%s is performing resync/recovery and cannot be %s\n", devname,
(s->level != UnSet && s->level != array.level) ? "taken over" : "reshaped");
sysfs_free(sra);
return 1;
}
/* ========= set size =============== */
if (s->size > 0 && (s->size == MAX_SIZE || s->size != (unsigned)array.size)) {
unsigned long long orig_size = get_component_size(fd) / 2;
unsigned long long min_csize;
struct mdinfo *mdi;
int raid0_takeover = 0;
if (orig_size == 0)
orig_size = (unsigned) array.size;
if (orig_size == 0) {
pr_err("Cannot set device size in this type of array.\n");
rv = 1;
goto release;
}
if (array.level == 0) {
pr_err("Component size change is not supported for RAID0\n");
rv = 1;
goto release;
}
if (reshape_super_size(st, devname, s->size, APPLY_METADATA_CHANGES, c)) {
rv = 1;
goto release;
}
sync_metadata(st);
if (st->ss->external) {
/* metadata can have size limitation
* update size value according to metadata information
*/
struct mdinfo *sizeinfo =
st->ss->container_content(st, subarray);
if (sizeinfo) {
unsigned long long new_size =
sizeinfo->custom_array_size/2;
int data_disks = get_data_disks(
sizeinfo->array.level,
sizeinfo->array.layout,
sizeinfo->array.raid_disks);
new_size /= data_disks;
dprintf("Metadata size correction from %llu to %llu (%llu)\n",
orig_size, new_size,
new_size * data_disks);
s->size = new_size;
sysfs_free(sizeinfo);
}
}
/* Update the size of each member device in case
* they have been resized. This will never reduce
* below the current used-size. The "size" attribute
* understands '0' to mean 'max'.
*/
min_csize = 0;
for (mdi = sra->devs; mdi; mdi = mdi->next) {
sysfs_set_num(sra, mdi, "size",
s->size == MAX_SIZE ? 0 : s->size);
if (array.not_persistent == 0 &&
array.major_version == 0 &&
get_linux_version() < 3001000) {
/* Dangerous to allow size to exceed 2TB */
unsigned long long csize;
if (sysfs_get_ll(sra, mdi, "size",
&csize) == 0) {
if (csize >= 2ULL*1024*1024*1024)
csize = 2ULL*1024*1024*1024;
if ((min_csize == 0 ||
(min_csize > csize)))
min_csize = csize;
}
}
}
if (min_csize && s->size > min_csize) {
pr_err("Cannot safely make this array use more than 2TB per device on this kernel.\n");
rv = 1;
goto size_change_error;
}
if (min_csize && s->size == MAX_SIZE) {
/* Don't let the kernel choose a size - it will get
* it wrong
*/
pr_err("Limited v0.90 array to 2TB per device\n");
s->size = min_csize;
}
if (st->ss->external) {
if (sra->array.level == 0) {
rv = sysfs_set_str(sra, NULL, "level", "raid5");
if (!rv) {
raid0_takeover = 1;
/* get array parameters after takeover
* to change one parameter at time only
*/
rv = md_get_array_info(fd, &array);
}
}
/* make sure mdmon is
* aware of the new level */
if (!mdmon_running(st->container_devnm))
start_mdmon(st->container_devnm);
ping_monitor(container);
if (wait_for_mdmon(st->container_devnm) != MDADM_STATUS_SUCCESS) {
pr_err("No mdmon found. Grow cannot continue.\n");
goto release;
}
}
if (s->size == MAX_SIZE)
s->size = 0;
array.size = s->size;
rv = sysfs_set_num(sra, NULL, "component_size", s->size);
/*
* For native metadata, md/array_size is updated by kernel,
* for external management update it here.
*/
if (st->ss->external && rv == MDADM_STATUS_SUCCESS)
rv = set_array_size(st, sra, sra->text_version);
if (raid0_takeover) {
/* do not recync non-existing parity,
* we will drop it anyway
*/
sysfs_set_str(sra, NULL, "sync_action", "frozen");
/* go back to raid0, drop parity disk
*/
sysfs_set_str(sra, NULL, "level", "raid0");
md_get_array_info(fd, &array);
}
size_change_error:
if (rv != 0) {
int err = errno;
/* restore metadata */
if (reshape_super_size(st, devname, orig_size,
ROLLBACK_METADATA_CHANGES, c) == 0)
sync_metadata(st);
pr_err("Cannot set device size for %s: %s\n",
devname, strerror(err));
if (err == EBUSY &&
(array.state & (1<<MD_SB_BITMAP_PRESENT)))
cont_err("Bitmap must be removed before size can be changed\n");
rv = 1;
goto release;
}
if (s->assume_clean) {
/* This will fail on kernels older than 3.0 unless
* a backport has been arranged.
*/
if (sra == NULL ||
sysfs_set_str(sra, NULL, "resync_start", STR_COMMON_NONE) < 0)
pr_err("--assume-clean not supported with --grow on this kernel\n");
}
md_get_array_info(fd, &array);
s->size = get_component_size(fd)/2;
if (s->size == 0)
s->size = array.size;
if (c->verbose >= 0) {
if (s->size == orig_size)
pr_err("component size of %s unchanged at %lluK\n",
devname, s->size);
else
pr_err("component size of %s has been set to %lluK\n",
devname, s->size);
}
changed = 1;
} else if (!is_container(array.level)) {
s->size = get_component_size(fd)/2;
if (s->size == 0)
s->size = array.size;
}
/* See if there is anything else to do */
if ((s->level == UnSet || s->level == array.level) &&
(s->layout_str == NULL) &&
(s->chunk == 0 || s->chunk == array.chunk_size) &&
s->data_offset == INVALID_SECTORS &&
(s->raiddisks == 0 || s->raiddisks == array.raid_disks)) {
/* Nothing more to do */
if (!changed && c->verbose >= 0)
pr_err("%s: no change requested\n", devname);
goto release;
}
/* ========= check for Raid10/Raid1 -> Raid0 conversion ===============
* current implementation assumes that following conditions must be met:
* - RAID10:
* - far_copies == 1
* - near_copies == 2
*/
if ((s->level == 0 && array.level == 10 && sra &&
array.layout == ((1 << 8) + 2) && !(array.raid_disks & 1)) ||
(s->level == 0 && array.level == 1 && sra)) {
int err;
err = remove_disks_for_takeover(st, sra, array.layout);
if (err) {
dprintf("Array cannot be reshaped\n");
if (cfd > -1)
close(cfd);
rv = 1;
goto release;
}
/* Make sure mdmon has seen the device removal
* and updated metadata before we continue with
* level change
*/
if (container)
ping_monitor(container);
}
memset(&info, 0, sizeof(info));
info.array = array;
if (sysfs_init(&info, fd, NULL)) {
pr_err("failed to initialize sysfs.\n");
rv = 1;
goto release;
}
strcpy(info.text_version, sra->text_version);
info.component_size = s->size*2;
info.new_level = s->level;
info.new_chunk = s->chunk * 1024;
if (is_container(info.array.level)) {
info.delta_disks = UnSet;
info.array.raid_disks = s->raiddisks;
} else if (s->raiddisks)
info.delta_disks = s->raiddisks - info.array.raid_disks;
else
info.delta_disks = UnSet;
if (s->layout_str == NULL) {
info.new_layout = UnSet;
if (info.array.level == 6 &&
(info.new_level == 6 || info.new_level == UnSet) &&
info.array.layout >= 16) {
pr_err("%s has a non-standard layout. If you wish to preserve this\n", devname);
cont_err("during the reshape, please specify --layout=preserve\n");
cont_err("If you want to change it, specify a layout or use --layout=normalise\n");
rv = 1;
goto release;
}
} else if (strcmp(s->layout_str, "normalise") == 0 ||
strcmp(s->layout_str, "normalize") == 0) {
/* If we have a -6 RAID6 layout, remove the '-6'. */
info.new_layout = UnSet;
if (info.array.level == 6 && info.new_level == UnSet) {
char l[40], *h;
strcpy(l, map_num_s(r6layout, info.array.layout));
h = strrchr(l, '-');
if (h && strcmp(h, "-6") == 0) {
*h = 0;
info.new_layout = map_name(r6layout, l);
}
} else {
pr_err("%s is only meaningful when reshaping a RAID6 array.\n", s->layout_str);
rv = 1;
goto release;
}
} else if (strcmp(s->layout_str, "preserve") == 0) {
/* This means that a non-standard RAID6 layout
* is OK.
* In particular:
* - When reshape a RAID6 (e.g. adding a device)
* which is in a non-standard layout, it is OK
* to preserve that layout.
* - When converting a RAID5 to RAID6, leave it in
* the XXX-6 layout, don't re-layout.
*/
if (info.array.level == 6 && info.new_level == UnSet)
info.new_layout = info.array.layout;
else if (info.array.level == 5 && info.new_level == 6) {
char l[40];
strcpy(l, map_num_s(r5layout, info.array.layout));
strcat(l, "-6");
info.new_layout = map_name(r6layout, l);
} else {
pr_err("%s in only meaningful when reshaping to RAID6\n", s->layout_str);
rv = 1;
goto release;
}
} else {
int l = info.new_level;
if (l == UnSet)
l = info.array.level;
switch (l) {
case 5:
info.new_layout = map_name(r5layout, s->layout_str);
break;
case 6:
info.new_layout = map_name(r6layout, s->layout_str);
break;
case 10:
info.new_layout = parse_layout_10(s->layout_str);
break;
case LEVEL_FAULTY:
info.new_layout = parse_layout_faulty(s->layout_str);
break;
default:
pr_err("layout not meaningful with this level\n");
rv = 1;
goto release;
}
if (info.new_layout == UnSet) {
pr_err("layout %s not understood for this level\n",
s->layout_str);
rv = 1;
goto release;
}
}
if (array.level == LEVEL_FAULTY) {
if (s->level != UnSet && s->level != array.level) {
pr_err("cannot change level of Faulty device\n");
rv =1 ;
}
if (s->chunk) {
pr_err("cannot set chunksize of Faulty device\n");
rv =1 ;
}
if (s->raiddisks && s->raiddisks != 1) {
pr_err("cannot set raid_disks of Faulty device\n");
rv =1 ;
}
if (s->layout_str) {
if (md_get_array_info(fd, &array) != 0) {
dprintf("Cannot get array information.\n");
goto release;
}
array.layout = info.new_layout;
if (md_set_array_info(fd, &array) != 0) {
pr_err("failed to set new layout\n");
rv = 1;
} else if (c->verbose >= 0)
printf("layout for %s set to %d\n",
devname, array.layout);
}
} else if (is_container(array.level)) {
/* This change is to be applied to every array in the
* container. This is only needed when the metadata imposes
* restraints of the various arrays in the container.
* Currently we only know that IMSM requires all arrays
* to have the same number of devices so changing the
* number of devices (On-Line Capacity Expansion) must be
* performed at the level of the container
*/
close_fd(&fd);
rv = reshape_container(container, devname, -1, st, &info,
c, 0, 0);
frozen = 0;
} else {
/* get spare devices from external metadata
*/
if (st->ss->external) {
struct mdinfo *info2;
info2 = st->ss->container_content(st, subarray);
if (info2) {
info.array.spare_disks =
info2->array.spare_disks;
sysfs_free(info2);
}
}
/* Impose these changes on a single array. First
* check that the metadata is OK with the change.
*/
if (reshape_super_non_size(st, devname, &info, c)) {
rv = 1;
goto release;
}
sync_metadata(st);
rv = reshape_array(container, fd, devname, st, &info, c->force,
devlist, s->data_offset, c->backup_file,
c->verbose, 0, 0, 0);
frozen = 0;
}
release:
sysfs_free(sra);
if (frozen > 0)
unfreeze(st);
return rv;
}
/* verify_reshape_position()
* Function checks if reshape position in metadata is not farther
* than position in md.
* Return value:
* 0 : not valid sysfs entry
* it can be caused by not started reshape, it should be started
* by reshape array or raid0 array is before takeover
* -1 : error, reshape position is obviously wrong
* 1 : success, reshape progress correct or updated
*/
static int verify_reshape_position(struct mdinfo *info, int level)
{
int ret_val = 0;
char buf[SYSFS_MAX_BUF_SIZE];
int rv;
/* read sync_max, failure can mean raid0 array */
rv = sysfs_get_str(info, NULL, "sync_max", buf, sizeof(buf));
if (rv > 0) {
char *ep;
unsigned long long position = strtoull(buf, &ep, 0);
dprintf("Read sync_max sysfs entry is: %s\n", buf);
if (!(ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' '))) {
position *= get_data_disks(level,
info->new_layout,
info->array.raid_disks);
if (info->reshape_progress < position) {
dprintf("Corrected reshape progress (%llu) to md position (%llu)\n",
info->reshape_progress, position);
info->reshape_progress = position;
ret_val = 1;
} else if (info->reshape_progress > position) {
pr_err("Fatal error: array reshape was not properly frozen (expected reshape position is %llu, but reshape progress is %llu.\n",
position, info->reshape_progress);
ret_val = -1;
} else {
dprintf("Reshape position in md and metadata are the same;");
ret_val = 1;
}
}
} else if (rv == 0) {
/* for valid sysfs entry, 0-length content
* should be indicated as error
*/
ret_val = -1;
}
return ret_val;
}
static unsigned long long choose_offset(unsigned long long lo,
unsigned long long hi,
unsigned long long min,
unsigned long long max)
{
/* Choose a new offset between hi and lo.
* It must be between min and max, but
* we would prefer something near the middle of hi/lo, and also
* prefer to be aligned to a big power of 2.
*
* So we start with the middle, then for each bit,
* starting at '1' and increasing, if it is set, we either
* add it or subtract it if possible, preferring the option
* which is furthest from the boundary.
*
* We stop once we get a 1MB alignment. As units are in sectors,
* 1MB = 2*1024 sectors.
*/
unsigned long long choice = (lo + hi) / 2;
unsigned long long bit = 1;
for (bit = 1; bit < 2*1024; bit = bit << 1) {
unsigned long long bigger, smaller;
if (! (bit & choice))
continue;
bigger = choice + bit;
smaller = choice - bit;
if (bigger > max && smaller < min)
break;
if (bigger > max)
choice = smaller;
else if (smaller < min)
choice = bigger;
else if (hi - bigger > smaller - lo)
choice = bigger;
else
choice = smaller;
}
return choice;
}
static int set_new_data_offset(struct mdinfo *sra, struct supertype *st,
char *devname, int delta_disks,
unsigned long long data_offset,
unsigned long long min,
int can_fallback)
{
struct mdinfo *sd;
int dir = 0;
int err = 0;
unsigned long long before, after;
/* Need to find min space before and after so same is used
* on all devices
*/
before = UINT64_MAX;
after = UINT64_MAX;
for (sd = sra->devs; sd; sd = sd->next) {
char *dn;
int dfd;
int rv;
struct supertype *st2;
struct mdinfo info2;
if (sd->disk.state & (1<<MD_DISK_FAULTY))
continue;
dn = map_dev(sd->disk.major, sd->disk.minor, 0);
dfd = dev_open(dn, O_RDONLY);
if (dfd < 0) {
pr_err("%s: cannot open component %s\n",
devname, dn ? dn : "-unknown-");
goto release;
}
st2 = dup_super(st);
rv = st2->ss->load_super(st2,dfd, NULL);
close(dfd);
if (rv) {
free(st2);
pr_err("%s: cannot get superblock from %s\n",
devname, dn);
goto release;
}
st2->ss->getinfo_super(st2, &info2, NULL);
st2->ss->free_super(st2);
free(st2);
if (info2.space_before == 0 &&
info2.space_after == 0) {
/* Metadata doesn't support data_offset changes */
if (!can_fallback)
pr_err("%s: Metadata version doesn't support data_offset changes\n",
devname);
goto fallback;
}
if (before > info2.space_before)
before = info2.space_before;
if (after > info2.space_after)
after = info2.space_after;
if (data_offset != INVALID_SECTORS) {
if (dir == 0) {
if (info2.data_offset == data_offset) {
pr_err("%s: already has that data_offset\n",
dn);
goto release;
}
if (data_offset < info2.data_offset)
dir = -1;
else
dir = 1;
} else if ((data_offset <= info2.data_offset &&
dir == 1) ||
(data_offset >= info2.data_offset &&
dir == -1)) {
pr_err("%s: differing data offsets on devices make this --data-offset setting impossible\n",
dn);
goto release;
}
}
}
if (before == UINT64_MAX)
/* impossible really, there must be no devices */
return 1;
for (sd = sra->devs; sd; sd = sd->next) {
char *dn = map_dev(sd->disk.major, sd->disk.minor, 0);
unsigned long long new_data_offset;
if (sd->disk.state & (1<<MD_DISK_FAULTY))
continue;
if (delta_disks < 0) {
/* Don't need any space as array is shrinking
* just move data_offset up by min
*/
if (data_offset == INVALID_SECTORS)
new_data_offset = sd->data_offset + min;
else {
if (data_offset < sd->data_offset + min) {
pr_err("--data-offset too small for %s\n",
dn);
goto release;
}
new_data_offset = data_offset;
}
} else if (delta_disks > 0) {
/* need space before */
if (before < min) {
if (can_fallback)
goto fallback;
pr_err("Insufficient head-space for reshape on %s\n",
dn);
goto release;
}
if (data_offset == INVALID_SECTORS)
new_data_offset = sd->data_offset - min;
else {
if (data_offset > sd->data_offset - min) {
pr_err("--data-offset too large for %s\n",
dn);
goto release;
}
new_data_offset = data_offset;
}
} else {
if (dir == 0) {
/* can move up or down. If 'data_offset'
* was set we would have already decided,
* so just choose direction with most space.
*/
if (before > after)
dir = -1;
else
dir = 1;
}
sysfs_set_str(sra, NULL, "reshape_direction",
dir == 1 ? "backwards" : "forwards");
if (dir > 0) {
/* Increase data offset */
if (after < min) {
if (can_fallback)
goto fallback;
pr_err("Insufficient tail-space for reshape on %s\n",
dn);
goto release;
}
if (data_offset != INVALID_SECTORS &&
data_offset < sd->data_offset + min) {
pr_err("--data-offset too small on %s\n",
dn);
goto release;
}
if (data_offset != INVALID_SECTORS)
new_data_offset = data_offset;
else
new_data_offset = choose_offset(sd->data_offset,
sd->data_offset + after,
sd->data_offset + min,
sd->data_offset + after);
} else {
/* Decrease data offset */
if (before < min) {
if (can_fallback)
goto fallback;
pr_err("insufficient head-room on %s\n",
dn);
goto release;
}
if (data_offset != INVALID_SECTORS &&
data_offset > sd->data_offset - min) {
pr_err("--data-offset too large on %s\n",
dn);
goto release;
}
if (data_offset != INVALID_SECTORS)
new_data_offset = data_offset;
else
new_data_offset = choose_offset(sd->data_offset - before,
sd->data_offset,
sd->data_offset - before,
sd->data_offset - min);
}
}
err = sysfs_set_num(sra, sd, "new_offset", new_data_offset);
if (err < 0 && errno == E2BIG) {
/* try again after increasing data size to max */
err = sysfs_set_num(sra, sd, "size", 0);
if (err < 0 && errno == EINVAL &&
!(sd->disk.state & (1<<MD_DISK_SYNC))) {
/* some kernels have a bug where you cannot
* use '0' on spare devices. */
sysfs_set_num(sra, sd, "size",
(sra->component_size + after)/2);
}
err = sysfs_set_num(sra, sd, "new_offset",
new_data_offset);
}
if (err < 0) {
if (errno == E2BIG && data_offset != INVALID_SECTORS) {
pr_err("data-offset is too big for %s\n", dn);
goto release;
}
if (sd == sra->devs &&
(errno == ENOENT || errno == E2BIG))
/* Early kernel, no 'new_offset' file,
* or kernel doesn't like us.
* For RAID5/6 this is not fatal
*/
return 1;
pr_err("Cannot set new_offset for %s\n", dn);
break;
}
}
return err;
release:
return -1;
fallback:
/* Just use a backup file */
return 1;
}
static int raid10_reshape(char *container, int fd, char *devname,
struct supertype *st, struct mdinfo *info,
struct reshape *reshape,
unsigned long long data_offset,
int force, int verbose)
{
/* Changing raid_disks, layout, chunksize or possibly
* just data_offset for a RAID10.
* We must always change data_offset. We change by at least
* ->min_offset_change which is the largest of the old and new
* chunk sizes.
* If raid_disks is increasing, then data_offset must decrease
* by at least this copy size.
* If raid_disks is unchanged, data_offset must increase or
* decrease by at least min_offset_change but preferably by much more.
* We choose half of the available space.
* If raid_disks is decreasing, data_offset must increase by
* at least min_offset_change. To allow of this, component_size
* must be decreased by the same amount.
*
* So we calculate the required minimum and direction, possibly
* reduce the component_size, then iterate through the devices
* and set the new_data_offset.
* If that all works, we set chunk_size, layout, raid_disks, and start
* 'reshape'
*/
struct mdinfo *sra;
unsigned long long min;
int err = 0;
sra = sysfs_read(fd, NULL,
GET_COMPONENT|GET_DEVS|GET_OFFSET|GET_STATE|GET_CHUNK
);
if (!sra) {
pr_err("%s: Cannot get array details from sysfs\n", devname);
goto release;
}
min = reshape->min_offset_change;
if (info->delta_disks)
sysfs_set_str(sra, NULL, "reshape_direction",
info->delta_disks < 0 ? "backwards" : "forwards");
if (info->delta_disks < 0 && info->space_after < min) {
int rv = sysfs_set_num(sra, NULL, "component_size",
(sra->component_size - min)/2);
if (rv) {
pr_err("cannot reduce component size\n");
goto release;
}
}
err = set_new_data_offset(sra, st, devname, info->delta_disks,
data_offset, min, 0);
if (err == 1) {
pr_err("Cannot set new_data_offset: RAID10 reshape not\n");
cont_err("supported on this kernel\n");
err = -1;
}
if (err < 0)
goto release;
if (!err && sysfs_set_num(sra, NULL, "chunk_size", info->new_chunk) < 0)
err = errno;
if (!err && sysfs_set_num(sra, NULL, "layout",
reshape->after.layout) < 0)
err = errno;
if (!err &&
sysfs_set_num(sra, NULL, "raid_disks",
info->array.raid_disks + info->delta_disks) < 0)
err = errno;
if (!err && sysfs_set_str(sra, NULL, "sync_action", "reshape") < 0)
err = errno;
if (err) {
pr_err("Cannot set array shape for %s\n",
devname);
if (err == EBUSY &&
(info->array.state & (1<<MD_SB_BITMAP_PRESENT)))
cont_err(" Bitmap must be removed before shape can be changed\n");
goto release;
}
sysfs_free(sra);
return 0;
release:
sysfs_free(sra);
return 1;
}
static void get_space_after(int fd, struct supertype *st, struct mdinfo *info)
{
struct mdinfo *sra, *sd;
/* Initialisation to silence compiler warning */
unsigned long long min_space_before = 0, min_space_after = 0;
int first = 1;
sra = sysfs_read(fd, NULL, GET_DEVS);
if (!sra)
return;
for (sd = sra->devs; sd; sd = sd->next) {
char *dn;
int dfd;
struct supertype *st2;
struct mdinfo info2;
if (sd->disk.state & (1<<MD_DISK_FAULTY))
continue;
dn = map_dev(sd->disk.major, sd->disk.minor, 0);
dfd = dev_open(dn, O_RDONLY);
if (dfd < 0)
break;
st2 = dup_super(st);
if (st2->ss->load_super(st2,dfd, NULL)) {
close(dfd);
free(st2);
break;
}
close(dfd);
st2->ss->getinfo_super(st2, &info2, NULL);
st2->ss->free_super(st2);
free(st2);
if (first ||
min_space_before > info2.space_before)
min_space_before = info2.space_before;
if (first ||
min_space_after > info2.space_after)
min_space_after = info2.space_after;
first = 0;
}
if (sd == NULL && !first) {
info->space_after = min_space_after;
info->space_before = min_space_before;
}
sysfs_free(sra);
}
static void update_cache_size(char *container, struct mdinfo *sra,
struct mdinfo *info,
int disks, unsigned long long blocks)
{
/* Check that the internal stripe cache is
* large enough, or it won't work.
* It must hold at least 4 stripes of the larger
* chunk size
*/
unsigned long cache;
cache = max(info->array.chunk_size, info->new_chunk);
cache *= 4; /* 4 stripes minimum */
cache /= 512; /* convert to sectors */
/* make sure there is room for 'blocks' with a bit to spare */
if (cache < 16 + blocks / disks)
cache = 16 + blocks / disks;
cache /= (4096/512); /* Convert from sectors to pages */
if (sra->cache_size < cache)
subarray_set_num(container, sra, "stripe_cache_size",
cache+1);
}
static int impose_reshape(struct mdinfo *sra,
struct mdinfo *info,
struct supertype *st,
int fd,
int restart,
char *devname, char *container,
struct reshape *reshape)
{
struct mdu_array_info_s array;
sra->new_chunk = info->new_chunk;
if (restart) {
/* for external metadata checkpoint saved by mdmon can be lost
* or missed /due to e.g. crash/. Check if md is not during
* restart farther than metadata points to.
* If so, this means metadata information is obsolete.
*/
if (st->ss->external)
verify_reshape_position(info, reshape->level);
sra->reshape_progress = info->reshape_progress;
} else {
sra->reshape_progress = 0;
if (reshape->after.data_disks < reshape->before.data_disks)
/* start from the end of the new array */
sra->reshape_progress = (sra->component_size
* reshape->after.data_disks);
}
md_get_array_info(fd, &array);
if (info->array.chunk_size == info->new_chunk &&
reshape->before.layout == reshape->after.layout &&
st->ss->external == 0) {
/* use SET_ARRAY_INFO but only if reshape hasn't started */
array.raid_disks = reshape->after.data_disks + reshape->parity;
if (!restart && md_set_array_info(fd, &array) != 0) {
int err = errno;
pr_err("Cannot set device shape for %s: %s\n",
devname, strerror(errno));
if (err == EBUSY &&
(array.state & (1<<MD_SB_BITMAP_PRESENT)))
cont_err("Bitmap must be removed before shape can be changed\n");
goto release;
}
} else if (!restart) {
/* set them all just in case some old 'new_*' value
* persists from some earlier problem.
*/
int err = 0;
if (sysfs_set_num(sra, NULL, "chunk_size", info->new_chunk) < 0)
err = errno;
if (!err && sysfs_set_num(sra, NULL, "layout",
reshape->after.layout) < 0)
err = errno;
/* new_level is introduced in kernel 6.12 */
if (!err && sysfs_attribute_available(sra, NULL, "new_level") &&
sysfs_set_num(sra, NULL, "new_level", info->new_level) < 0)
err = errno;
if (!err && subarray_set_num(container, sra, "raid_disks",
reshape->after.data_disks +
reshape->parity) < 0)
err = errno;
if (err) {
pr_err("Cannot set device shape for %s\n", devname);
if (err == EBUSY &&
(array.state & (1<<MD_SB_BITMAP_PRESENT)))
cont_err("Bitmap must be removed before shape can be changed\n");
goto release;
}
}
return 0;
release:
return -1;
}
static int impose_level(int fd, int level, char *devname, int verbose)
{
char *c;
struct mdu_array_info_s array;
struct mdinfo info;
if (sysfs_init(&info, fd, NULL)) {
pr_err("failed to initialize sysfs.\n");
return 1;
}
md_get_array_info(fd, &array);
if (level == 0 && is_level456(array.level)) {
/* To convert to RAID0 we need to fail and
* remove any non-data devices. */
int found = 0;
int d;
int data_disks = array.raid_disks - 1;
if (array.level == 6)
data_disks -= 1;
if (array.level == 5 && array.layout != ALGORITHM_PARITY_N)
return -1;
if (array.level == 6 && array.layout != ALGORITHM_PARITY_N_6)
return -1;
sysfs_set_str(&info, NULL,"sync_action", "idle");
/* First remove any spares so no recovery starts */
for (d = 0, found = 0;
d < MAX_DISKS && found < array.nr_disks; d++) {
mdu_disk_info_t disk;
disk.number = d;
if (md_get_disk_info(fd, &disk) < 0)
continue;
if (disk.major == 0 && disk.minor == 0)
continue;
found++;
if ((disk.state & (1 << MD_DISK_ACTIVE)) &&
disk.raid_disk < data_disks)
/* keep this */
continue;
ioctl(fd, HOT_REMOVE_DISK,
makedev(disk.major, disk.minor));
}
/* Now fail anything left */
md_get_array_info(fd, &array);
for (d = 0, found = 0;
d < MAX_DISKS && found < array.nr_disks; d++) {
mdu_disk_info_t disk;
disk.number = d;
if (md_get_disk_info(fd, &disk) < 0)
continue;
if (disk.major == 0 && disk.minor == 0)
continue;
found++;
if ((disk.state & (1 << MD_DISK_ACTIVE)) &&
disk.raid_disk < data_disks)
/* keep this */
continue;
ioctl(fd, SET_DISK_FAULTY,
makedev(disk.major, disk.minor));
hot_remove_disk(fd, makedev(disk.major, disk.minor), 1);
}
/*
* hot_remove_disk lets kernel set MD_RECOVERY_RUNNING
* and it can't set level. It needs to wait sometime
* to let md thread to clear the flag.
*/
pr_info("wait 5 seconds to give kernel space to finish job\n");
sleep_for(5, 0, true);
}
c = map_num(pers, level);
if (c) {
int err = sysfs_set_str(&info, NULL, "level", c);
if (err) {
err = errno;
pr_err("%s: could not set level to %s\n",
devname, c);
if (err == EBUSY &&
(array.state & (1<<MD_SB_BITMAP_PRESENT)))
cont_err("Bitmap must be removed before level can be changed\n");
return err;
}
if (verbose >= 0)
pr_err("level of %s changed to %s\n", devname, c);
}
return 0;
}
int sigterm = 0;
static void catch_term(int sig)
{
sigterm = 1;
}
static int reshape_array(char *container, int fd, char *devname,
struct supertype *st, struct mdinfo *info,
int force, struct mddev_dev *devlist,
unsigned long long data_offset,
char *backup_file, int verbose, int forked,
int restart, int freeze_reshape)
{
struct reshape reshape;
int spares_needed;
char *msg;
int orig_level = UnSet;
int odisks;
int delayed;
struct mdu_array_info_s array;
char *c;
struct mddev_dev *dv;
int added_disks;
int *fdlist = NULL;
unsigned long long *offsets = NULL;
int d;
int nrdisks;
int err;
unsigned long blocks;
unsigned long long array_size;
int done;
struct mdinfo *sra = NULL;
char buf[SYSFS_MAX_BUF_SIZE];
bool located_backup = false;
/* when reshaping a RAID0, the component_size might be zero.
* So try to fix that up.
*/
if (md_get_array_info(fd, &array) != 0) {
dprintf("Cannot get array information.\n");
goto release;
}
if (st->update_tail == NULL)
st->update_tail = &st->updates;
if (array.level == 0 && info->component_size == 0) {
get_dev_size(fd, NULL, &array_size);
info->component_size = array_size / array.raid_disks;
}
if (array.level == 10)
/* Need space_after info */
get_space_after(fd, st, info);
if (info->reshape_active) {
int new_level = info->new_level;
info->new_level = UnSet;
if (info->delta_disks > 0)
info->array.raid_disks -= info->delta_disks;
msg = analyse_change(devname, info, &reshape);
info->new_level = new_level;
if (info->delta_disks > 0)
info->array.raid_disks += info->delta_disks;
if (!restart)
/* Make sure the array isn't read-only */
ioctl(fd, RESTART_ARRAY_RW, 0);
} else
msg = analyse_change(devname, info, &reshape);
if (msg) {
/* if msg == "", error has already been printed */
if (msg[0])
pr_err("%s\n", msg);
goto release;
}
if (restart && (reshape.level != info->array.level ||
reshape.before.layout != info->array.layout ||
reshape.before.data_disks + reshape.parity !=
info->array.raid_disks - max(0, info->delta_disks))) {
pr_err("reshape info is not in native format - cannot continue.\n");
goto release;
}
if (st->ss->external && restart && (info->reshape_progress == 0) &&
!((sysfs_get_str(info, NULL, "sync_action",
buf, sizeof(buf)) > 0) &&
(strncmp(buf, "reshape", 7) == 0))) {
/* When reshape is restarted from '0', very begin of array
* it is possible that for external metadata reshape and array
* configuration doesn't happen.
* Check if md has the same opinion, and reshape is restarted
* from 0. If so, this is regular reshape start after reshape
* switch in metadata to next array only.
*/
if ((verify_reshape_position(info, reshape.level) >= 0) &&
(info->reshape_progress == 0))
restart = 0;
}
if (restart) {
/*
* reshape already started. just skip to monitoring
* the reshape
*/
if (reshape.backup_blocks == 0)
return 0;
if (restart & RESHAPE_NO_BACKUP)
return 0;
/* Need 'sra' down at 'started:' */
sra = sysfs_read(fd, NULL,
GET_COMPONENT|GET_DEVS|GET_OFFSET|GET_STATE|
GET_CHUNK|GET_CACHE);
if (!sra) {
pr_err("%s: Cannot get array details from sysfs\n",
devname);
goto release;
}
if (!backup_file) {
backup_file = locate_backup(sra->sys_name);
located_backup = true;
}
goto started;
}
/* The container is frozen but the array may not be.
* So freeze the array so spares don't get put to the wrong use
* FIXME there should probably be a cleaner separation between
* freeze_array and freeze_container.
*/
sysfs_freeze_array(info);
/* Check we have enough spares to not be degraded */
added_disks = 0;
for (dv = devlist; dv ; dv=dv->next)
added_disks++;
spares_needed = max(reshape.before.data_disks,
reshape.after.data_disks) +
reshape.parity - array.raid_disks;
if (!force && info->new_level > 1 && info->array.level > 1 &&
spares_needed > info->array.spare_disks + added_disks) {
pr_err("Need %d spare%s to avoid degraded array, and only have %d.\n"
" Use --force to over-ride this check.\n",
spares_needed,
spares_needed == 1 ? "" : "s",
info->array.spare_disks + added_disks);
goto release;
}
/* Check we have enough spares to not fail */
spares_needed = max(reshape.before.data_disks,
reshape.after.data_disks)
- array.raid_disks;
if ((info->new_level > 1 || info->new_level == 0) &&
spares_needed > info->array.spare_disks +added_disks) {
pr_err("Need %d spare%s to create working array, and only have %d.\n",
spares_needed, spares_needed == 1 ? "" : "s",
info->array.spare_disks + added_disks);
goto release;
}
if (reshape.level != array.level) {
int err = impose_level(fd, reshape.level, devname, verbose);
if (err)
goto release;
info->new_layout = UnSet; /* after level change,
* layout is meaningless */
orig_level = array.level;
sysfs_freeze_array(info);
if (reshape.level > 0 && st->ss->external) {
/* make sure mdmon is aware of the new level */
if (mdmon_running(container))
flush_mdmon(container);
if (!mdmon_running(container))
start_mdmon(container);
ping_monitor(container);
if (wait_for_mdmon(container) == MDADM_STATUS_SUCCESS &&
!st->update_tail)
st->update_tail = &st->updates;
}
}
/* ->reshape_super might have chosen some spares from the
* container that it wants to be part of the new array.
* We can collect them with ->container_content and give
* them to the kernel.
*/
if (st->ss->reshape_super && st->ss->container_content) {
char *subarray = strchr(info->text_version+1, '/')+1;
struct mdinfo *info2 =
st->ss->container_content(st, subarray);
struct mdinfo *d;
if (info2) {
if (sysfs_init(info2, fd, st->devnm)) {
pr_err("unable to initialize sysfs for %s\n",
st->devnm);
free(info2);
goto release;
}
/* When increasing number of devices, we need to set
* new raid_disks before adding these, or they might
* be rejected.
*/
if (reshape.backup_blocks &&
reshape.after.data_disks >
reshape.before.data_disks)
subarray_set_num(container, info2, "raid_disks",
reshape.after.data_disks +
reshape.parity);
for (d = info2->devs; d; d = d->next) {
if (d->disk.state == 0 &&
d->disk.raid_disk >= 0) {
/* This is a spare that wants to
* be part of the array.
*/
if (add_disk(fd, st, info2, d) < 0) {
pr_err("Can not add disk %s\n",
d->sys_name);
free(info2);
goto release;
}
}
}
sysfs_free(info2);
}
}
/* We might have been given some devices to add to the
* array. Now that the array has been changed to the right
* level and frozen, we can safely add them.
*/
if (devlist) {
if (Manage_subdevs(devname, fd, devlist, verbose, 0, UOPT_UNDEFINED, 0))
goto release;
}
if (reshape.backup_blocks == 0 && data_offset != INVALID_SECTORS)
reshape.backup_blocks = reshape.before.data_disks * info->array.chunk_size/512;
if (reshape.backup_blocks == 0) {
/* No restriping needed, but we might need to impose
* some more changes: layout, raid_disks, chunk_size
*/
/* read current array info */
if (md_get_array_info(fd, &array) != 0) {
dprintf("Cannot get array information.\n");
goto release;
}
/* compare current array info with new values and if
* it is different update them to new */
if (info->new_layout != UnSet &&
info->new_layout != array.layout) {
array.layout = info->new_layout;
if (md_set_array_info(fd, &array) != 0) {
pr_err("failed to set new layout\n");
goto release;
} else if (verbose >= 0)
printf("layout for %s set to %d\n",
devname, array.layout);
}
if (info->delta_disks != UnSet && info->delta_disks != 0 &&
array.raid_disks !=
(info->array.raid_disks + info->delta_disks)) {
array.raid_disks += info->delta_disks;
if (md_set_array_info(fd, &array) != 0) {
pr_err("failed to set raid disks\n");
goto release;
} else if (verbose >= 0) {
printf("raid_disks for %s set to %d\n",
devname, array.raid_disks);
}
}
if (info->new_chunk != 0 &&
info->new_chunk != array.chunk_size) {
if (sysfs_set_num(info, NULL,
"chunk_size", info->new_chunk) != 0) {
pr_err("failed to set chunk size\n");
goto release;
} else if (verbose >= 0)
printf("chunk size for %s set to %d\n",
devname, info->new_chunk);
}
unfreeze(st);
return 0;
}
/*
* There are three possibilities.
* 1/ The array will shrink.
* We need to ensure the reshape will pause before reaching
* the 'critical section'. We also need to fork and wait for
* that to happen. When it does we
* suspend/backup/complete/unfreeze
*
* 2/ The array will not change size.
* This requires that we keep a backup of a sliding window
* so that we can restore data after a crash. So we need
* to fork and monitor progress.
* In future we will allow the data_offset to change, so
* a sliding backup becomes unnecessary.
*
* 3/ The array will grow. This is relatively easy.
* However the kernel's restripe routines will cheerfully
* overwrite some early data before it is safe. So we
* need to make a backup of the early parts of the array
* and be ready to restore it if rebuild aborts very early.
* For externally managed metadata, we still need a forked
* child to monitor the reshape and suspend IO over the region
* that is being reshaped.
*
* We backup data by writing it to one spare, or to a
* file which was given on command line.
*
* In each case, we first make sure that storage is available
* for the required backup.
* Then we:
* - request the shape change.
* - fork to handle backup etc.
*/
/* Check that we can hold all the data */
get_dev_size(fd, NULL, &array_size);
if (reshape.new_size < (array_size/512)) {
pr_err("this change will reduce the size of the array.\n"
" use --grow --array-size first to truncate array.\n"
" e.g. mdadm --grow %s --array-size %llu\n",
devname, reshape.new_size/2);
goto release;
}
if (array.level == 10) {
/* Reshaping RAID10 does not require any data backup by
* user-space. Instead it requires that the data_offset
* is changed to avoid the need for backup.
* So this is handled very separately
*/
if (restart)
/* Nothing to do. */
return 0;
return raid10_reshape(container, fd, devname, st, info,
&reshape, data_offset, force, verbose);
}
sra = sysfs_read(fd, NULL,
GET_COMPONENT|GET_DEVS|GET_OFFSET|GET_STATE|GET_CHUNK|
GET_CACHE);
if (!sra) {
pr_err("%s: Cannot get array details from sysfs\n",
devname);
goto release;
}
if (!backup_file)
switch(set_new_data_offset(sra, st, devname,
reshape.after.data_disks - reshape.before.data_disks,
data_offset,
reshape.min_offset_change, 1)) {
case -1:
goto release;
case 0:
/* Updated data_offset, so it's easy now */
update_cache_size(container, sra, info,
min(reshape.before.data_disks,
reshape.after.data_disks),
reshape.backup_blocks);
/* Right, everything seems fine. Let's kick things off.
*/
sync_metadata(st);
if (impose_reshape(sra, info, st, fd, restart,
devname, container, &reshape) < 0)
goto release;
if (sysfs_set_str(sra, NULL, "sync_action", "reshape") < 0) {
struct mdinfo *sd;
if (errno != EINVAL) {
pr_err("Failed to initiate reshape!\n");
goto release;
}
/* revert data_offset and try the old way */
for (sd = sra->devs; sd; sd = sd->next) {
sysfs_set_num(sra, sd, "new_offset",
sd->data_offset);
sysfs_set_str(sra, NULL, "reshape_direction",
"forwards");
}
break;
}
if (info->new_level == reshape.level)
return 0;
/* need to adjust level when reshape completes */
switch(fork()) {
case -1: /* ignore error, but don't wait */
return 0;
default: /* parent */
return 0;
case 0:
manage_fork_fds(0);
map_fork();
break;
}
close(fd);
wait_reshape(sra);
fd = open_dev(sra->sys_name);
if (fd >= 0)
impose_level(fd, info->new_level, devname, verbose);
return 0;
case 1: /* Couldn't set data_offset, try the old way */
if (data_offset != INVALID_SECTORS) {
pr_err("Cannot update data_offset on this array\n");
goto release;
}
break;
}
started:
/* Decide how many blocks (sectors) for a reshape
* unit. The number we have so far is just a minimum
*/
blocks = reshape.backup_blocks;
if (reshape.before.data_disks ==
reshape.after.data_disks) {
/* Make 'blocks' bigger for better throughput, but
* not so big that we reject it below.
* Try for 16 megabytes
*/
while (blocks * 32 < sra->component_size && blocks < 16*1024*2)
blocks *= 2;
} else
pr_err("Need to backup %luK of critical section..\n", blocks/2);
if (blocks >= sra->component_size/2) {
pr_err("%s: Something wrong - reshape aborted\n", devname);
goto release;
}
/* Now we need to open all these devices so we can read/write.
*/
nrdisks = max(reshape.before.data_disks,
reshape.after.data_disks) + reshape.parity
+ sra->array.spare_disks;
fdlist = xcalloc((1+nrdisks), sizeof(int));
offsets = xcalloc((1+nrdisks), sizeof(offsets[0]));
odisks = reshape.before.data_disks + reshape.parity;
d = reshape_prepare_fdlist(devname, sra, odisks, nrdisks, blocks,
backup_file, fdlist, offsets);
if (d < odisks) {
goto release;
}
if ((st->ss->manage_reshape == NULL) ||
(st->ss->recover_backup == NULL)) {
if (backup_file == NULL) {
if (reshape.after.data_disks <=
reshape.before.data_disks) {
pr_err("%s: Cannot grow - need backup-file\n",
devname);
pr_err(" Please provide one with \"--backup=...\"\n");
goto release;
} else if (d == odisks) {
pr_err("%s: Cannot grow - need a spare or backup-file to backup critical section\n", devname);
goto release;
}
} else {
if (!reshape_open_backup_file(backup_file, fd, devname,
(signed)blocks,
fdlist+d, offsets+d,
sra->sys_name, restart)) {
goto release;
}
d++;
}
}
update_cache_size(container, sra, info,
min(reshape.before.data_disks,
reshape.after.data_disks), blocks);
/* Right, everything seems fine. Let's kick things off.
* If only changing raid_disks, use ioctl, else use
* sysfs.
*/
sync_metadata(st);
if (impose_reshape(sra, info, st, fd, restart,
devname, container, &reshape) < 0)
goto release;
err = start_reshape(sra, restart, reshape.before.data_disks,
reshape.after.data_disks, st);
if (err) {
pr_err("Cannot %s reshape for %s\n",
restart ? "continue" : "start", devname);
goto release;
}
if (restart)
sysfs_set_str(sra, NULL, "array_state", "active");
if (freeze_reshape) {
free(fdlist);
free(offsets);
sysfs_free(sra);
pr_err("Reshape has to be continued from location %llu when root filesystem has been mounted.\n",
sra->reshape_progress);
return 1;
}
if (!forked)
if (continue_via_systemd(container ?: sra->sys_name,
GROW_SERVICE, NULL)) {
free(fdlist);
free(offsets);
sysfs_free(sra);
return 0;
}
/* Now we just need to kick off the reshape and watch, while
* handling backups of the data...
* This is all done by a forked background process.
*/
switch(forked ? 0 : fork()) {
case -1:
pr_err("Cannot run child to monitor reshape: %s\n",
strerror(errno));
abort_reshape(sra);
goto release;
default:
free(fdlist);
free(offsets);
sysfs_free(sra);
return 0;
case 0:
map_fork();
break;
}
/* Close unused file descriptor in the forked process */
close_fd(&fd);
/* If another array on the same devices is busy, the
* reshape will wait for them. This would mean that
* the first section that we suspend will stay suspended
* for a long time. So check on that possibility
* by looking for "DELAYED" in /proc/mdstat, and if found,
* wait a while
*/
do {
struct mdstat_ent *mds, *m;
delayed = 0;
mds = mdstat_read(1, 0);
for (m = mds; m; m = m->next)
if (strcmp(m->devnm, sra->sys_name) == 0) {
if (m->resync && m->percent == RESYNC_DELAYED)
delayed = 1;
if (m->resync == 0)
/* Haven't started the reshape thread
* yet, wait a bit
*/
delayed = 2;
break;
}
free_mdstat(mds);
if (delayed == 1 && get_linux_version() < 3007000) {
pr_err("Reshape is delayed, but cannot wait carefully with this kernel.\n"
" You might experience problems until other reshapes complete.\n");
delayed = 0;
}
if (delayed)
mdstat_wait(30 - (delayed-1) * 25);
} while (delayed);
mdstat_close();
mlockall(MCL_FUTURE);
if (signal_s(SIGTERM, catch_term) == SIG_ERR)
goto release;
if (check_env("MDADM_GROW_VERIFY"))
fd = open(devname, O_RDONLY | O_DIRECT);
if (st->ss->external) {
/* metadata handler takes it from here */
done = st->ss->manage_reshape(
fd, sra, &reshape, st, blocks,
fdlist, offsets, d - odisks, fdlist + odisks,
offsets + odisks);
} else
done = child_monitor(
fd, sra, &reshape, st, blocks, fdlist, offsets,
d - odisks, fdlist + odisks, offsets + odisks);
close_fd(&fd);
free(fdlist);
free(offsets);
if (backup_file && done) {
char *bul;
bul = make_backup(sra->sys_name);
if (bul) {
char buf[1024];
int l = readlink(bul, buf, sizeof(buf) - 1);
if (l > 0) {
buf[l]=0;
unlink(buf);
}
unlink(bul);
free(bul);
}
unlink(backup_file);
}
if (!done) {
abort_reshape(sra);
goto out;
}
if (!st->ss->external &&
!(reshape.before.data_disks != reshape.after.data_disks &&
info->custom_array_size) && info->new_level == reshape.level &&
!forked) {
/* no need to wait for the reshape to finish as
* there is nothing more to do.
*/
sysfs_free(sra);
exit(0);
}
wait_reshape(sra);
if (st->ss->external) {
/* Re-load the metadata as much could have changed */
int cfd = open_dev(st->container_devnm);
if (cfd >= 0) {
flush_mdmon(container);
st->ss->free_super(st);
st->ss->load_container(st, cfd, container);
close(cfd);
}
}
/* set new array size if required customer_array_size is used
* by this metadata.
*/
if (reshape.before.data_disks != reshape.after.data_disks &&
info->custom_array_size)
set_array_size(st, info, info->text_version);
if (info->new_level != reshape.level) {
fd = open_dev(sra->sys_name);
if (fd < 0) {
pr_err("Can't open %s\n", sra->sys_name);
goto out;
}
impose_level(fd, info->new_level, sra->sys_name, verbose);
close(fd);
if (info->new_level == 0)
st->update_tail = NULL;
}
out:
sysfs_free(sra);
if (forked)
return 0;
unfreeze(st);
exit(0);
release:
if (located_backup)
free(backup_file);
free(fdlist);
free(offsets);
if (orig_level != UnSet && sra) {
c = map_num(pers, orig_level);
if (c && sysfs_set_str(sra, NULL, "level", c) == 0)
pr_err("aborting level change\n");
}
sysfs_free(sra);
if (!forked)
unfreeze(st);
return 1;
}
/* mdfd handle is passed to be closed in child process (after fork).
*/
int reshape_container(char *container, char *devname,
int mdfd,
struct supertype *st,
struct mdinfo *info,
struct context *c,
int forked, int restart)
{
struct mdinfo *cc = NULL;
int rv = restart;
char last_devnm[32] = "";
/* component_size is not meaningful for a container */
if (!restart && reshape_super_non_size(st, devname, info, c)) {
unfreeze(st);
return 1;
}
sync_metadata(st);
/* ping monitor to be sure that update is on disk
*/
ping_monitor(container);
if (!forked && !c->freeze_reshape)
if (continue_via_systemd(container, GROW_SERVICE, NULL))
return 0;
switch (forked ? 0 : fork()) {
case -1: /* error */
perror("Cannot fork to complete reshape\n");
unfreeze(st);
return 1;
default: /* parent */
if (!c->freeze_reshape)
printf("%s: multi-array reshape continues in background\n", Name);
return 0;
case 0: /* child */
manage_fork_fds(0);
map_fork();
break;
}
/* close unused handle in child process
*/
if (mdfd > -1)
close(mdfd);
while(1) {
/* For each member array with reshape_active,
* we need to perform the reshape.
* We pick the first array that needs reshaping and
* reshape it. reshape_array() will re-read the metadata
* so the next time through a different array should be
* ready for reshape.
* It is possible that the 'different' array will not
* be assembled yet. In that case we simple exit.
* When it is assembled, the mdadm which assembles it
* will take over the reshape.
*/
struct mdinfo *content;
int fd;
struct mdstat_ent *mdstat;
char *adev;
dev_t devid;
sysfs_free(cc);
cc = st->ss->container_content(st, NULL);
for (content = cc; content ; content = content->next) {
char *subarray;
if (!content->reshape_active)
continue;
subarray = strchr(content->text_version+1, '/')+1;
mdstat = mdstat_by_subdev(subarray, container);
if (!mdstat)
continue;
if (mdstat->active == 0) {
pr_err("Skipping inactive array %s.\n",
mdstat->devnm);
free_mdstat(mdstat);
mdstat = NULL;
continue;
}
break;
}
if (!content)
break;
devid = devnm2devid(mdstat->devnm);
adev = map_dev(major(devid), minor(devid), 0);
if (!adev)
adev = content->text_version;
fd = open_dev(mdstat->devnm);
if (fd < 0) {
pr_err("Device %s cannot be opened for reshape.\n",
adev);
break;
}
if (strcmp(last_devnm, mdstat->devnm) == 0) {
/* Do not allow for multiple reshape_array() calls for
* the same array.
* It can happen when reshape_array() returns without
* error, when reshape is not finished (wrong reshape
* starting/continuation conditions). Mdmon doesn't
* switch to next array in container and reentry
* conditions for the same array occur.
* This is possibly interim until the behaviour of
* reshape_array is resolved().
*/
printf("%s: Multiple reshape execution detected for device %s.\n", Name, adev);
close(fd);
break;
}
strcpy(last_devnm, mdstat->devnm);
if (sysfs_init(content, fd, mdstat->devnm)) {
pr_err("Unable to initialize sysfs for %s\n",
mdstat->devnm);
rv = 1;
close_fd(&fd);
break;
}
if (mdmon_running(container))
flush_mdmon(container);
rv = reshape_array(container, fd, adev, st,
content, c->force, NULL, INVALID_SECTORS,
c->backup_file, c->verbose, 1, restart,
c->freeze_reshape);
close(fd);
if (c->freeze_reshape) {
sysfs_free(cc);
exit(0);
}
restart = 0;
if (rv)
break;
if (mdmon_running(container))
flush_mdmon(container);
}
if (!rv)
unfreeze(st);
sysfs_free(cc);
exit(0);
}
/*
* We run a child process in the background which performs the following
* steps:
* - wait for resync to reach a certain point
* - suspend io to the following section
* - backup that section
* - allow resync to proceed further
* - resume io
* - discard the backup.
*
* When are combined in slightly different ways in the three cases.
* Grow:
* - suspend/backup/allow/wait/resume/discard
* Shrink:
* - allow/wait/suspend/backup/allow/wait/resume/discard
* same-size:
* - wait/resume/discard/suspend/backup/allow
*
* suspend/backup/allow always come together
* wait/resume/discard do too.
* For the same-size case we have two backups to improve flow.
*
*/
int progress_reshape(struct mdinfo *info, struct reshape *reshape,
unsigned long long backup_point,
unsigned long long wait_point,
unsigned long long *suspend_point,
unsigned long long *reshape_completed, int *frozen)
{
/* This function is called repeatedly by the reshape manager.
* It determines how much progress can safely be made and allows
* that progress.
* - 'info' identifies the array and particularly records in
* ->reshape_progress the metadata's knowledge of progress
* This is a sector offset from the start of the array
* of the next array block to be relocated. This number
* may increase from 0 or decrease from array_size, depending
* on the type of reshape that is happening.
* Note that in contrast, 'sync_completed' is a block count of the
* reshape so far. It gives the distance between the start point
* (head or tail of device) and the next place that data will be
* written. It always increases.
* - 'reshape' is the structure created by analyse_change
* - 'backup_point' shows how much the metadata manager has backed-up
* data. For reshapes with increasing progress, it is the next address
* to be backed up, previous addresses have been backed-up. For
* decreasing progress, it is the earliest address that has been
* backed up - later address are also backed up.
* So addresses between reshape_progress and backup_point are
* backed up providing those are in the 'correct' order.
* - 'wait_point' is an array address. When reshape_completed
* passes this point, progress_reshape should return. It might
* return earlier if it determines that ->reshape_progress needs
* to be updated or further backup is needed.
* - suspend_point is maintained by progress_reshape and the caller
* should not touch it except to initialise to zero.
* It is an array address and it only increases in 2.6.37 and earlier.
* This makes it difficult to handle reducing reshapes with
* external metadata.
* However: it is similar to backup_point in that it records the
* other end of a suspended region from reshape_progress.
* it is moved to extend the region that is safe to backup and/or
* reshape
* - reshape_completed is read from sysfs and returned. The caller
* should copy this into ->reshape_progress when it has reason to
* believe that the metadata knows this, and any backup outside this
* has been erased.
*
* Return value is:
* 1 if more data from backup_point - but only as far as suspend_point,
* should be backed up
* 0 if things are progressing smoothly
* -1 if the reshape is finished because it is all done,
* -2 if the reshape is finished due to an error.
*/
int advancing = (reshape->after.data_disks
>= reshape->before.data_disks);
unsigned long long need_backup; /* All data between start of array and
* here will at some point need to
* be backed up.
*/
unsigned long long read_offset, write_offset;
unsigned long long write_range;
unsigned long long max_progress, target, completed;
unsigned long long array_size = (info->component_size
* reshape->before.data_disks);
int fd;
char buf[SYSFS_MAX_BUF_SIZE];
/* First, we unsuspend any region that is now known to be safe.
* If suspend_point is on the 'wrong' side of reshape_progress, then
* we don't have or need suspension at the moment. This is true for
* native metadata when we don't need to back-up.
*/
if (advancing) {
if (info->reshape_progress <= *suspend_point)
sysfs_set_num(info, NULL, "suspend_lo",
info->reshape_progress);
} else {
/* Note: this won't work in 2.6.37 and before.
* Something somewhere should make sure we don't need it!
*/
if (info->reshape_progress >= *suspend_point)
sysfs_set_num(info, NULL, "suspend_hi",
info->reshape_progress);
}
/* Now work out how far it is safe to progress.
* If the read_offset for ->reshape_progress is less than
* 'blocks' beyond the write_offset, we can only progress as far
* as a backup.
* Otherwise we can progress until the write_offset for the new location
* reaches (within 'blocks' of) the read_offset at the current location.
* However that region must be suspended unless we are using native
* metadata.
* If we need to suspend more, we limit it to 128M per device, which is
* rather arbitrary and should be some time-based calculation.
*/
read_offset = info->reshape_progress / reshape->before.data_disks;
write_offset = info->reshape_progress / reshape->after.data_disks;
write_range = info->new_chunk/512;
if (reshape->before.data_disks == reshape->after.data_disks)
need_backup = array_size;
else
need_backup = reshape->backup_blocks;
if (advancing) {
if (read_offset < write_offset + write_range)
max_progress = backup_point;
else
max_progress =
read_offset * reshape->after.data_disks;
} else {
if (read_offset > write_offset - write_range)
/* Can only progress as far as has been backed up,
* which must be suspended */
max_progress = backup_point;
else if (info->reshape_progress <= need_backup)
max_progress = backup_point;
else {
if (info->array.major_version >= 0)
/* Can progress until backup is needed */
max_progress = need_backup;
else {
/* Can progress until metadata update is required */
max_progress =
read_offset * reshape->after.data_disks;
/* but data must be suspended */
if (max_progress < *suspend_point)
max_progress = *suspend_point;
}
}
}
/* We know it is safe to progress to 'max_progress' providing
* it is suspended or we are using native metadata.
* Consider extending suspend_point 128M per device if it
* is less than 64M per device beyond reshape_progress.
* But always do a multiple of 'blocks'
* FIXME this is too big - it takes to long to complete
* this much.
*/
target = 64*1024*2 * min(reshape->before.data_disks,
reshape->after.data_disks);
target /= reshape->backup_blocks;
if (target < 2)
target = 2;
target *= reshape->backup_blocks;
/* For externally managed metadata we always need to suspend IO to
* the area being reshaped so we regularly push suspend_point forward.
* For native metadata we only need the suspend if we are going to do
* a backup.
*/
if (advancing) {
if ((need_backup > info->reshape_progress ||
info->array.major_version < 0) &&
*suspend_point < info->reshape_progress + target) {
if (need_backup < *suspend_point + 2 * target)
*suspend_point = need_backup;
else if (*suspend_point + 2 * target < array_size)
*suspend_point += 2 * target;
else
*suspend_point = array_size;
sysfs_set_num(info, NULL, "suspend_hi", *suspend_point);
if (max_progress > *suspend_point)
max_progress = *suspend_point;
}
} else {
if (info->array.major_version >= 0) {
/* Only need to suspend when about to backup */
if (info->reshape_progress < need_backup * 2 &&
*suspend_point > 0) {
*suspend_point = 0;
sysfs_set_num(info, NULL, "suspend_lo", 0);
sysfs_set_num(info, NULL, "suspend_hi",
need_backup);
}
} else {
/* Need to suspend continually */
if (info->reshape_progress < *suspend_point)
*suspend_point = info->reshape_progress;
if (*suspend_point + target < info->reshape_progress)
/* No need to move suspend region yet */;
else {
if (*suspend_point >= 2 * target)
*suspend_point -= 2 * target;
else
*suspend_point = 0;
sysfs_set_num(info, NULL, "suspend_lo",
*suspend_point);
}
if (max_progress < *suspend_point)
max_progress = *suspend_point;
}
}
/* now set sync_max to allow that progress. sync_max, like
* sync_completed is a count of sectors written per device, so
* we find the difference between max_progress and the start point,
* and divide that by after.data_disks to get a sync_max
* number.
* At the same time we convert wait_point to a similar number
* for comparing against sync_completed.
*/
/* scale down max_progress to per_disk */
max_progress /= reshape->after.data_disks;
/*
* Round to chunk size as some kernels give an erroneously
* high number
*/
max_progress /= info->new_chunk/512;
max_progress *= info->new_chunk/512;
/* And round to old chunk size as the kernel wants that */
max_progress /= info->array.chunk_size/512;
max_progress *= info->array.chunk_size/512;
/* Limit progress to the whole device */
if (max_progress > info->component_size)
max_progress = info->component_size;
wait_point /= reshape->after.data_disks;
if (!advancing) {
/* switch from 'device offset' to 'processed block count' */
max_progress = info->component_size - max_progress;
wait_point = info->component_size - wait_point;
}
if (!*frozen)
sysfs_set_num(info, NULL, "sync_max", max_progress);
/* Now wait. If we have already reached the point that we were
* asked to wait to, don't wait at all, else wait for any change.
* We need to select on 'sync_completed' as that is the place that
* notifications happen, but we are really interested in
* 'reshape_position'
*/
fd = sysfs_get_fd(info, NULL, "sync_completed");
if (fd < 0)
goto check_progress;
if (sysfs_fd_get_ll(fd, &completed) < 0)
goto check_progress;
while (completed < max_progress && completed < wait_point) {
/* Check that sync_action is still 'reshape' to avoid
* waiting forever on a dead array
*/
char action[SYSFS_MAX_BUF_SIZE];
if (sysfs_get_str(info, NULL, "sync_action", action, sizeof(action)) <= 0)
break;
/* Some kernels reset 'sync_completed' to zero
* before setting 'sync_action' to 'idle'.
* So we need these extra tests.
*/
if (completed == 0 && advancing &&
strncmp(action, "idle", 4) == 0 &&
info->reshape_progress > 0) {
info->reshape_progress = need_backup;
break;
}
if (completed == 0 && !advancing &&
strncmp(action, "idle", 4) == 0 &&
info->reshape_progress <
(info->component_size * reshape->after.data_disks)) {
info->reshape_progress = need_backup;
break;
}
if (strncmp(action, "reshape", 7) != 0)
break;
sysfs_wait(fd, NULL);
if (sysfs_fd_get_ll(fd, &completed) < 0)
goto check_progress;
}
/* Some kernels reset 'sync_completed' to zero,
* we need to have real point we are in md.
* So in that case, read 'reshape_position' from sysfs.
*/
if (completed == 0) {
unsigned long long reshapep;
char action[SYSFS_MAX_BUF_SIZE];
if (sysfs_get_str(info, NULL, "sync_action", action, sizeof(action)) > 0 &&
strncmp(action, "idle", 4) == 0 &&
sysfs_get_ll(info, NULL,
"reshape_position", &reshapep) == 0)
*reshape_completed = reshapep;
} else {
/* some kernels can give an incorrectly high
* 'completed' number, so round down */
completed /= (info->new_chunk/512);
completed *= (info->new_chunk/512);
/* Convert 'completed' back in to a 'progress' number */
completed *= reshape->after.data_disks;
if (!advancing)
completed = (info->component_size
* reshape->after.data_disks
- completed);
*reshape_completed = completed;
}
close(fd);
/* We return the need_backup flag. Caller will decide
* how much - a multiple of ->backup_blocks up to *suspend_point
*/
if (advancing)
return need_backup > info->reshape_progress;
else
return need_backup >= info->reshape_progress;
check_progress:
/* if we couldn't read a number from sync_completed, then
* either the reshape did complete, or it aborted.
* We can tell which by checking for 'none' in reshape_position.
* If it did abort, then it might immediately restart if it
* it was just a device failure that leaves us degraded but
* functioning.
*/
if (sysfs_get_str(info, NULL, "reshape_position", buf, sizeof(buf)) < 0 ||
str_is_none(buf) == false) {
/* The abort might only be temporary. Wait up to 10
* seconds for fd to contain a valid number again.
*/
int wait = 10000;
int rv = -2;
unsigned long long new_sync_max;
while (fd >= 0 && rv < 0 && wait > 0) {
if (sysfs_wait(fd, &wait) != 1)
break;
switch (sysfs_fd_get_ll(fd, &completed)) {
case 0:
/* all good again */
rv = 1;
/* If "sync_max" is no longer max_progress
* we need to freeze things
*/
sysfs_get_ll(info, NULL, "sync_max",
&new_sync_max);
*frozen = (new_sync_max != max_progress);
break;
case -2: /* read error - abort */
wait = 0;
break;
}
}
if (fd >= 0)
close(fd);
return rv; /* abort */
} else {
/* Maybe racing with array shutdown - check state */
if (fd >= 0)
close(fd);
if (sysfs_get_str(info, NULL, "array_state", buf,
sizeof(buf)) < 0 ||
strncmp(buf, "inactive", 8) == 0 ||
strncmp(buf, "clear",5) == 0)
return -2; /* abort */
return -1; /* complete */
}
}
/* FIXME return status is never checked */
static int grow_backup(struct mdinfo *sra,
unsigned long long offset, /* per device */
unsigned long stripes, /* per device, in old chunks */
int *sources, unsigned long long *offsets,
int disks, int chunk, int level, int layout,
int dests, int *destfd, unsigned long long *destoffsets,
int part, int *degraded,
char *buf)
{
/* Backup 'blocks' sectors at 'offset' on each device of the array,
* to storage 'destfd' (offset 'destoffsets'), after first
* suspending IO. Then allow resync to continue
* over the suspended section.
* Use part 'part' of the backup-super-block.
*/
int odata = disks;
int rv = 0;
int i;
unsigned long long ll;
int new_degraded;
//printf("offset %llu\n", offset);
if (level >= 4)
odata--;
if (level == 6)
odata--;
/* Check that array hasn't become degraded, else we might backup the wrong data */
if (sysfs_get_ll(sra, NULL, "degraded", &ll) < 0)
return -1; /* FIXME this error is ignored */
new_degraded = (int)ll;
if (new_degraded != *degraded) {
/* check each device to ensure it is still working */
struct mdinfo *sd;
for (sd = sra->devs ; sd ; sd = sd->next) {
if (sd->disk.state & (1<<MD_DISK_FAULTY))
continue;
if (sd->disk.state & (1<<MD_DISK_SYNC)) {
char sbuf[SYSFS_MAX_BUF_SIZE];
if (sysfs_get_str(sra, sd, "state",
sbuf, sizeof(sbuf)) < 0 ||
strstr(sbuf, "faulty") ||
strstr(sbuf, "in_sync") == NULL) {
/* this device is dead */
sd->disk.state = (1<<MD_DISK_FAULTY);
if (sd->disk.raid_disk >= 0 &&
sources[sd->disk.raid_disk] >= 0) {
close(sources[sd->disk.raid_disk]);
sources[sd->disk.raid_disk] = -1;
}
}
}
}
*degraded = new_degraded;
}
if (part) {
bsb.arraystart2 = __cpu_to_le64(offset * odata);
bsb.length2 = __cpu_to_le64(stripes * (chunk/512) * odata);
} else {
bsb.arraystart = __cpu_to_le64(offset * odata);
bsb.length = __cpu_to_le64(stripes * (chunk/512) * odata);
}
if (part)
bsb.magic[15] = '2';
for (i = 0; i < dests; i++)
if (part)
lseek64(destfd[i], destoffsets[i] +
__le64_to_cpu(bsb.devstart2)*512, 0);
else
lseek64(destfd[i], destoffsets[i], 0);
rv = save_stripes(sources, offsets, disks, chunk, level, layout,
dests, destfd, offset * 512 * odata,
stripes * chunk * odata, buf);
if (rv)
return rv;
bsb.mtime = __cpu_to_le64(time(0));
for (i = 0; i < dests; i++) {
bsb.devstart = __cpu_to_le64(destoffsets[i]/512);
bsb.sb_csum = bsb_csum((char*)&bsb,
((char*)&bsb.sb_csum)-((char*)&bsb));
if (memcmp(bsb.magic, "md_backup_data-2", 16) == 0)
bsb.sb_csum2 = bsb_csum((char*)&bsb,
((char*)&bsb.sb_csum2)-((char*)&bsb));
rv = -1;
if ((unsigned long long)lseek64(destfd[i],
destoffsets[i] - 4096, 0) !=
destoffsets[i] - 4096)
break;
if (write(destfd[i], &bsb, 512) != 512)
break;
if (destoffsets[i] > 4096) {
if ((unsigned long long)lseek64(destfd[i], destoffsets[i]+stripes*chunk*odata, 0) !=
destoffsets[i]+stripes*chunk*odata)
break;
if (write(destfd[i], &bsb, 512) != 512)
break;
}
fsync(destfd[i]);
rv = 0;
}
return rv;
}
/* in 2.6.30, the value reported by sync_completed can be
* less that it should be by one stripe.
* This only happens when reshape hits sync_max and pauses.
* So allow wait_backup to either extent sync_max further
* than strictly necessary, or return before the
* sync has got quite as far as we would really like.
* This is what 'blocks2' is for.
* The various caller give appropriate values so that
* every works.
*/
/* FIXME return value is often ignored */
static int forget_backup(int dests, int *destfd,
unsigned long long *destoffsets,
int part)
{
/*
* Erase backup 'part' (which is 0 or 1)
*/
int i;
int rv;
if (part) {
bsb.arraystart2 = __cpu_to_le64(0);
bsb.length2 = __cpu_to_le64(0);
} else {
bsb.arraystart = __cpu_to_le64(0);
bsb.length = __cpu_to_le64(0);
}
bsb.mtime = __cpu_to_le64(time(0));
rv = 0;
for (i = 0; i < dests; i++) {
bsb.devstart = __cpu_to_le64(destoffsets[i]/512);
bsb.sb_csum = bsb_csum((char*)&bsb,
((char*)&bsb.sb_csum)-((char*)&bsb));
if (memcmp(bsb.magic, "md_backup_data-2", 16) == 0)
bsb.sb_csum2 = bsb_csum((char*)&bsb,
((char*)&bsb.sb_csum2)-((char*)&bsb));
if ((unsigned long long)lseek64(destfd[i], destoffsets[i]-4096, 0) !=
destoffsets[i]-4096)
rv = -1;
if (rv == 0 && write(destfd[i], &bsb, 512) != 512)
rv = -1;
fsync(destfd[i]);
}
return rv;
}
static void fail(char *msg)
{
int rv;
rv = (write(2, msg, strlen(msg)) != (int)strlen(msg));
rv |= (write(2, "\n", 1) != 1);
exit(rv ? 1 : 2);
}
static char *abuf, *bbuf;
static unsigned long long abuflen;
static void validate(int afd, int bfd, unsigned long long offset)
{
/* check that the data in the backup against the array.
* This is only used for regression testing and should not
* be used while the array is active
*/
if (afd < 0)
return;
if (lseek64(bfd, offset - 4096, 0) < 0) {
pr_err("lseek64 fails %d:%s\n", errno, strerror(errno));
return;
}
if (read(bfd, &bsb2, 512) != 512)
fail("cannot read bsb");
if (bsb2.sb_csum != bsb_csum((char*)&bsb2,
((char*)&bsb2.sb_csum)-((char*)&bsb2)))
fail("first csum bad");
if (memcmp(bsb2.magic, "md_backup_data", 14) != 0)
fail("magic is bad");
if (memcmp(bsb2.magic, "md_backup_data-2", 16) == 0 &&
bsb2.sb_csum2 != bsb_csum((char*)&bsb2,
((char*)&bsb2.sb_csum2)-((char*)&bsb2)))
fail("second csum bad");
if (__le64_to_cpu(bsb2.devstart)*512 != offset)
fail("devstart is wrong");
if (bsb2.length) {
unsigned long long len = __le64_to_cpu(bsb2.length)*512;
if (abuflen < len) {
free(abuf);
free(bbuf);
abuflen = len;
if (posix_memalign((void**)&abuf, 4096, abuflen) ||
posix_memalign((void**)&bbuf, 4096, abuflen)) {
abuflen = 0;
/* just stop validating on mem-alloc failure */
return;
}
}
if (lseek64(bfd, offset, 0) < 0) {
pr_err("lseek64 fails %d:%s\n", errno, strerror(errno));
goto out;
}
if ((unsigned long long)read(bfd, bbuf, len) != len) {
//printf("len %llu\n", len);
fail("read first backup failed");
}
if (lseek64(afd, __le64_to_cpu(bsb2.arraystart)*512, 0) < 0) {
pr_err("lseek64 fails %d:%s\n", errno, strerror(errno));
goto out;
}
if ((unsigned long long)read(afd, abuf, len) != len)
fail("read first from array failed");
if (memcmp(bbuf, abuf, len) != 0)
fail("data1 compare failed");
}
if (bsb2.length2) {
unsigned long long len = __le64_to_cpu(bsb2.length2)*512;
if (abuflen < len) {
free(abuf);
free(bbuf);
abuflen = len;
abuf = xmalloc(abuflen);
bbuf = xmalloc(abuflen);
}
if (lseek64(bfd, offset+__le64_to_cpu(bsb2.devstart2)*512, 0) < 0) {
pr_err("lseek64 fails %d:%s\n", errno, strerror(errno));
goto out;
}
if ((unsigned long long)read(bfd, bbuf, len) != len)
fail("read second backup failed");
if (lseek64(afd, __le64_to_cpu(bsb2.arraystart2)*512, 0) < 0) {
pr_err("lseek64 fails %d:%s\n", errno, strerror(errno));
goto out;
}
if ((unsigned long long)read(afd, abuf, len) != len)
fail("read second from array failed");
if (memcmp(bbuf, abuf, len) != 0)
fail("data2 compare failed");
}
out:
free(abuf);
free(bbuf);
return;
}
int child_monitor(int afd, struct mdinfo *sra, struct reshape *reshape,
struct supertype *st, unsigned long blocks,
int *fds, unsigned long long *offsets,
int dests, int *destfd, unsigned long long *destoffsets)
{
/* Monitor a reshape where backup is being performed using
* 'native' mechanism - either to a backup file, or
* to some space in a spare.
*/
char *buf;
int degraded = -1;
unsigned long long suspend_point, array_size;
unsigned long long backup_point, wait_point;
unsigned long long reshape_completed;
int done = 0;
int increasing = reshape->after.data_disks >=
reshape->before.data_disks;
int part = 0; /* The next part of the backup area to fill. It
* may already be full, so we need to check */
int level = reshape->level;
int layout = reshape->before.layout;
int data = reshape->before.data_disks;
int disks = reshape->before.data_disks + reshape->parity;
int chunk = sra->array.chunk_size;
struct mdinfo *sd;
unsigned long stripes;
int uuid[4];
int frozen = 0;
/* set up the backup-super-block. This requires the
* uuid from the array.
*/
/* Find a superblock */
for (sd = sra->devs; sd; sd = sd->next) {
char *dn;
int devfd;
int ok;
if (sd->disk.state & (1<<MD_DISK_FAULTY))
continue;
dn = map_dev(sd->disk.major, sd->disk.minor, 1);
devfd = dev_open(dn, O_RDONLY);
if (devfd < 0)
continue;
ok = st->ss->load_super(st, devfd, NULL);
close(devfd);
if (ok == 0)
break;
}
if (!sd) {
pr_err("Cannot find a superblock\n");
return 0;
}
memset(&bsb, 0, 512);
memcpy(bsb.magic, "md_backup_data-1", 16);
st->ss->uuid_from_super(st, uuid);
memcpy(bsb.set_uuid, uuid, 16);
bsb.mtime = __cpu_to_le64(time(0));
bsb.devstart2 = blocks;
stripes = blocks / (sra->array.chunk_size/512) /
reshape->before.data_disks;
if (posix_memalign((void**)&buf, 4096, disks * chunk))
/* Don't start the 'reshape' */
return 0;
if (increasing) {
array_size = sra->component_size * reshape->after.data_disks;
backup_point = sra->reshape_progress;
suspend_point = 0;
} else {
array_size = sra->component_size * reshape->before.data_disks;
backup_point = reshape->backup_blocks;
suspend_point = array_size;
}
while (!done) {
int rv;
/* Want to return as soon the oldest backup slot can
* be released as that allows us to start backing up
* some more, providing suspend_point has been
* advanced, which it should have.
*/
if (increasing) {
wait_point = array_size;
if (part == 0 && __le64_to_cpu(bsb.length) > 0)
wait_point = (__le64_to_cpu(bsb.arraystart) +
__le64_to_cpu(bsb.length));
if (part == 1 && __le64_to_cpu(bsb.length2) > 0)
wait_point = (__le64_to_cpu(bsb.arraystart2) +
__le64_to_cpu(bsb.length2));
} else {
wait_point = 0;
if (part == 0 && __le64_to_cpu(bsb.length) > 0)
wait_point = __le64_to_cpu(bsb.arraystart);
if (part == 1 && __le64_to_cpu(bsb.length2) > 0)
wait_point = __le64_to_cpu(bsb.arraystart2);
}
reshape_completed = sra->reshape_progress;
rv = progress_reshape(sra, reshape,
backup_point, wait_point,
&suspend_point, &reshape_completed,
&frozen);
/* external metadata would need to ping_monitor here */
sra->reshape_progress = reshape_completed;
/* Clear any backup region that is before 'here' */
if (increasing) {
if (__le64_to_cpu(bsb.length) > 0 &&
reshape_completed >= (__le64_to_cpu(bsb.arraystart) +
__le64_to_cpu(bsb.length)))
forget_backup(dests, destfd,
destoffsets, 0);
if (__le64_to_cpu(bsb.length2) > 0 &&
reshape_completed >= (__le64_to_cpu(bsb.arraystart2) +
__le64_to_cpu(bsb.length2)))
forget_backup(dests, destfd,
destoffsets, 1);
} else {
if (__le64_to_cpu(bsb.length) > 0 &&
reshape_completed <= (__le64_to_cpu(bsb.arraystart)))
forget_backup(dests, destfd,
destoffsets, 0);
if (__le64_to_cpu(bsb.length2) > 0 &&
reshape_completed <= (__le64_to_cpu(bsb.arraystart2)))
forget_backup(dests, destfd,
destoffsets, 1);
}
if (sigterm)
rv = -2;
if (rv < 0) {
if (rv == -1)
done = 1;
break;
}
if (rv == 0 && increasing && !st->ss->external) {
/* No longer need to monitor this reshape */
sysfs_set_str(sra, NULL, "sync_max", "max");
done = 1;
break;
}
while (rv) {
unsigned long long offset;
unsigned long actual_stripes;
/* Need to backup some data.
* If 'part' is not used and the desired
* backup size is suspended, do a backup,
* then consider the next part.
*/
/* Check that 'part' is unused */
if (part == 0 && __le64_to_cpu(bsb.length) != 0)
break;
if (part == 1 && __le64_to_cpu(bsb.length2) != 0)
break;
offset = backup_point / data;
actual_stripes = stripes;
if (increasing) {
if (offset + actual_stripes * (chunk/512) >
sra->component_size)
actual_stripes = ((sra->component_size - offset)
/ (chunk/512));
if (offset + actual_stripes * (chunk/512) >
suspend_point/data)
break;
} else {
if (offset < actual_stripes * (chunk/512))
actual_stripes = offset / (chunk/512);
offset -= actual_stripes * (chunk/512);
if (offset < suspend_point/data)
break;
}
if (actual_stripes == 0)
break;
grow_backup(sra, offset, actual_stripes, fds, offsets,
disks, chunk, level, layout, dests, destfd,
destoffsets, part, °raded, buf);
validate(afd, destfd[0], destoffsets[0]);
/* record where 'part' is up to */
part = !part;
if (increasing)
backup_point += actual_stripes * (chunk/512) * data;
else
backup_point -= actual_stripes * (chunk/512) * data;
}
}
/* FIXME maybe call progress_reshape one more time instead */
/* remove any remaining suspension */
sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
sysfs_set_num(sra, NULL, "suspend_hi", 0);
sysfs_set_num(sra, NULL, "suspend_lo", 0);
sysfs_set_num(sra, NULL, "sync_min", 0);
free(buf);
return done;
}
/*
* If any spare contains md_back_data-1 which is recent wrt mtime,
* write that data into the array and update the super blocks with
* the new reshape_progress
*/
int Grow_restart(struct supertype *st, struct mdinfo *info, int *fdlist,
int cnt, char *backup_file, int verbose)
{
int i, j;
int old_disks;
unsigned long long *offsets;
unsigned long long nstripe, ostripe;
int ndata, odata;
int fd, backup_fd = -1;
odata = info->array.raid_disks - info->delta_disks - 1;
if (info->array.level == 6)
odata--; /* number of data disks */
ndata = info->array.raid_disks - 1;
if (info->new_level == 6)
ndata--;
old_disks = info->array.raid_disks - info->delta_disks;
if (info->delta_disks <= 0)
/* Didn't grow, so the backup file must have
* been used
*/
old_disks = cnt;
if (backup_file) {
backup_fd = open(backup_file, O_RDONLY);
if (!is_fd_valid(backup_fd)) {
pr_err("Can't open backup file %s : %s\n",
backup_file, strerror(errno));
return -EINVAL;
}
}
for (i=old_disks-(backup_file?1:0); i<cnt; i++) {
struct mdinfo dinfo;
int bsbsize;
char *devname, namebuf[20];
unsigned long long lo, hi;
/* This was a spare and may have some saved data on it.
* Load the superblock, find and load the
* backup_super_block.
* If either fail, go on to next device.
* If the backup contains no new info, just return
* else restore data and update all superblocks
*/
if (i == old_disks-1) {
if (!is_fd_valid(backup_fd))
continue;
fd = backup_fd;
devname = backup_file;
} else {
fd = fdlist[i];
if (fd < 0)
continue;
if (st->ss->load_super(st, fd, NULL))
continue;
st->ss->getinfo_super(st, &dinfo, NULL);
st->ss->free_super(st);
if (lseek64(fd,
(dinfo.data_offset + dinfo.component_size - 8) <<9,
0) < 0) {
pr_err("Cannot seek on device %d\n", i);
continue; /* Cannot seek */
}
sprintf(namebuf, "device-%d", i);
devname = namebuf;
}
if (read(fd, &bsb, sizeof(bsb)) != sizeof(bsb)) {
if (verbose)
pr_err("Cannot read from %s\n", devname);
continue; /* Cannot read */
}
if (memcmp(bsb.magic, "md_backup_data-1", 16) != 0 &&
memcmp(bsb.magic, "md_backup_data-2", 16) != 0) {
if (verbose)
pr_err("No backup metadata on %s\n", devname);
continue;
}
if (bsb.sb_csum != bsb_csum((char*)&bsb, ((char*)&bsb.sb_csum)-((char*)&bsb))) {
if (verbose)
pr_err("Bad backup-metadata checksum on %s\n",
devname);
continue; /* bad checksum */
}
if (memcmp(bsb.magic, "md_backup_data-2", 16) == 0 &&
bsb.sb_csum2 != bsb_csum((char*)&bsb, ((char*)&bsb.sb_csum2)-((char*)&bsb))) {
if (verbose)
pr_err("Bad backup-metadata checksum2 on %s\n",
devname);
continue; /* Bad second checksum */
}
if (memcmp(bsb.set_uuid,info->uuid, 16) != 0) {
if (verbose)
pr_err("Wrong uuid on backup-metadata on %s\n",
devname);
continue; /* Wrong uuid */
}
/*
* array utime and backup-mtime should be updated at
* much the same time, but it seems that sometimes
* they aren't... So allow considerable flexability in
* matching, and allow this test to be overridden by
* an environment variable.
*/
if(time_after(info->array.utime, (unsigned int)__le64_to_cpu(bsb.mtime) + 2*60*60) ||
time_before(info->array.utime, (unsigned int)__le64_to_cpu(bsb.mtime) - 10*60)) {
if (check_env("MDADM_GROW_ALLOW_OLD")) {
pr_err("accepting backup with timestamp %lu for array with timestamp %lu\n",
(unsigned long)__le64_to_cpu(bsb.mtime),
(unsigned long)info->array.utime);
} else {
pr_err("too-old timestamp on backup-metadata on %s\n", devname);
pr_err("If you think it is should be safe, try 'export MDADM_GROW_ALLOW_OLD=1'\n");
continue; /* time stamp is too bad */
}
}
if (bsb.magic[15] == '1') {
if (bsb.length == 0)
continue;
if (info->delta_disks >= 0) {
/* reshape_progress is increasing */
if (__le64_to_cpu(bsb.arraystart)
+ __le64_to_cpu(bsb.length)
< info->reshape_progress) {
nonew:
if (verbose)
pr_err("backup-metadata found on %s but is not needed\n", devname);
continue; /* No new data here */
}
} else {
/* reshape_progress is decreasing */
if (__le64_to_cpu(bsb.arraystart) >=
info->reshape_progress)
goto nonew; /* No new data here */
}
} else {
if (bsb.length == 0 && bsb.length2 == 0)
continue;
if (info->delta_disks >= 0) {
/* reshape_progress is increasing */
if ((__le64_to_cpu(bsb.arraystart)
+ __le64_to_cpu(bsb.length)
< info->reshape_progress) &&
(__le64_to_cpu(bsb.arraystart2)
+ __le64_to_cpu(bsb.length2)
< info->reshape_progress))
goto nonew; /* No new data here */
} else {
/* reshape_progress is decreasing */
if (__le64_to_cpu(bsb.arraystart) >=
info->reshape_progress &&
__le64_to_cpu(bsb.arraystart2) >=
info->reshape_progress)
goto nonew; /* No new data here */
}
}
if (lseek64(fd, __le64_to_cpu(bsb.devstart)*512, 0)< 0) {
second_fail:
if (verbose)
pr_err("Failed to verify secondary backup-metadata block on %s\n",
devname);
continue; /* Cannot seek */
}
/* There should be a duplicate backup superblock 4k before here */
if (lseek64(fd, -4096, 1) < 0 ||
read(fd, &bsb2, sizeof(bsb2)) != sizeof(bsb2))
goto second_fail; /* Cannot find leading superblock */
if (bsb.magic[15] == '1')
bsbsize = offsetof(struct mdp_backup_super, pad1);
else
bsbsize = offsetof(struct mdp_backup_super, pad);
if (memcmp(&bsb2, &bsb, bsbsize) != 0)
goto second_fail; /* Cannot find leading superblock */
/* Now need the data offsets for all devices. */
offsets = xmalloc(sizeof(*offsets)*info->array.raid_disks);
for(j=0; j<info->array.raid_disks; j++) {
if (fdlist[j] < 0)
continue;
if (st->ss->load_super(st, fdlist[j], NULL))
/* FIXME should be this be an error */
continue;
st->ss->getinfo_super(st, &dinfo, NULL);
st->ss->free_super(st);
offsets[j] = dinfo.data_offset * 512;
}
printf("%s: restoring critical section\n", Name);
if (restore_stripes(fdlist, offsets, info->array.raid_disks,
info->new_chunk, info->new_level,
info->new_layout, fd,
__le64_to_cpu(bsb.devstart)*512,
__le64_to_cpu(bsb.arraystart)*512,
__le64_to_cpu(bsb.length)*512, NULL)) {
/* didn't succeed, so giveup */
if (verbose)
pr_err("Error restoring backup from %s\n",
devname);
free(offsets);
close_fd(&backup_fd);
return 1;
}
if (bsb.magic[15] == '2' &&
restore_stripes(fdlist, offsets, info->array.raid_disks,
info->new_chunk, info->new_level,
info->new_layout, fd,
__le64_to_cpu(bsb.devstart)*512 +
__le64_to_cpu(bsb.devstart2)*512,
__le64_to_cpu(bsb.arraystart2)*512,
__le64_to_cpu(bsb.length2)*512, NULL)) {
/* didn't succeed, so giveup */
if (verbose)
pr_err("Error restoring second backup from %s\n",
devname);
free(offsets);
close_fd(&backup_fd);
return 1;
}
free(offsets);
/* Ok, so the data is restored. Let's update those superblocks. */
lo = hi = 0;
if (bsb.length) {
lo = __le64_to_cpu(bsb.arraystart);
hi = lo + __le64_to_cpu(bsb.length);
}
if (bsb.magic[15] == '2' && bsb.length2) {
unsigned long long lo1, hi1;
lo1 = __le64_to_cpu(bsb.arraystart2);
hi1 = lo1 + __le64_to_cpu(bsb.length2);
if (lo == hi) {
lo = lo1;
hi = hi1;
} else if (lo < lo1)
hi = hi1;
else
lo = lo1;
}
if (lo < hi && (info->reshape_progress < lo ||
info->reshape_progress > hi))
/* backup does not affect reshape_progress*/ ;
else if (info->delta_disks >= 0) {
info->reshape_progress = __le64_to_cpu(bsb.arraystart) +
__le64_to_cpu(bsb.length);
if (bsb.magic[15] == '2') {
unsigned long long p2;
p2 = __le64_to_cpu(bsb.arraystart2) +
__le64_to_cpu(bsb.length2);
if (p2 > info->reshape_progress)
info->reshape_progress = p2;
}
} else {
info->reshape_progress = __le64_to_cpu(bsb.arraystart);
if (bsb.magic[15] == '2') {
unsigned long long p2;
p2 = __le64_to_cpu(bsb.arraystart2);
if (p2 < info->reshape_progress)
info->reshape_progress = p2;
}
}
for (j=0; j<info->array.raid_disks; j++) {
if (fdlist[j] < 0)
continue;
if (st->ss->load_super(st, fdlist[j], NULL))
continue;
st->ss->getinfo_super(st, &dinfo, NULL);
dinfo.reshape_progress = info->reshape_progress;
st->ss->update_super(st, &dinfo,
UOPT_SPEC__RESHAPE_PROGRESS,
NULL,0, 0, NULL);
st->ss->store_super(st, fdlist[j]);
st->ss->free_super(st);
}
close_fd(&backup_fd);
return 0;
}
close_fd(&backup_fd);
/* Didn't find any backup data, try to see if any
* was needed.
*/
if (info->delta_disks < 0) {
/* When shrinking, the critical section is at the end.
* So see if we are before the critical section.
*/
unsigned long long first_block;
nstripe = ostripe = 0;
first_block = 0;
while (ostripe >= nstripe) {
ostripe += info->array.chunk_size / 512;
first_block = ostripe * odata;
nstripe = first_block / ndata / (info->new_chunk/512) *
(info->new_chunk/512);
}
if (info->reshape_progress >= first_block)
return 0;
}
if (info->delta_disks > 0) {
/* See if we are beyond the critical section. */
unsigned long long last_block;
nstripe = ostripe = 0;
last_block = 0;
while (nstripe >= ostripe) {
nstripe += info->new_chunk / 512;
last_block = nstripe * ndata;
ostripe = last_block / odata / (info->array.chunk_size/512) *
(info->array.chunk_size/512);
}
if (info->reshape_progress >= last_block)
return 0;
}
/* needed to recover critical section! */
if (verbose)
pr_err("Failed to find backup of critical section\n");
return 1;
}
int Grow_continue_command(char *devname, int fd, struct context *c)
{
int ret_val = 0;
struct supertype *st = NULL;
struct mdinfo *content = NULL;
struct mdinfo array;
char *subarray = NULL;
struct mdinfo *cc = NULL;
struct mdstat_ent *mdstat = NULL;
int cfd = -1;
int fd2;
dprintf("Grow continue from command line called for %s\n", devname);
st = super_by_fd(fd, &subarray);
if (!st || !st->ss) {
pr_err("Unable to determine metadata format for %s\n", devname);
return 1;
}
dprintf("Grow continue is run for ");
if (st->ss->external == 0) {
int d;
int cnt = 5;
dprintf_cont("native array (%s)\n", devname);
if (md_get_array_info(fd, &array.array) < 0) {
pr_err("%s is not an active md array - aborting\n",
devname);
ret_val = 1;
goto Grow_continue_command_exit;
}
content = &array;
if (sysfs_init(content, fd, NULL) < 0) {
pr_err("sysfs_init fails\n");
ret_val = 1;
goto Grow_continue_command_exit;
}
/* Need to load a superblock.
* FIXME we should really get what we need from
* sysfs
*/
do {
for (d = 0; d < MAX_DISKS; d++) {
mdu_disk_info_t disk;
char *dv;
int err;
disk.number = d;
if (md_get_disk_info(fd, &disk) < 0)
continue;
if (disk.major == 0 && disk.minor == 0)
continue;
if ((disk.state & (1 << MD_DISK_ACTIVE)) == 0)
continue;
dv = map_dev(disk.major, disk.minor, 1);
if (!dv)
continue;
fd2 = dev_open(dv, O_RDONLY);
if (fd2 < 0)
continue;
err = st->ss->load_super(st, fd2, NULL);
close(fd2);
if (err)
continue;
break;
}
if (d == MAX_DISKS) {
pr_err("Unable to load metadata for %s\n",
devname);
ret_val = 1;
goto Grow_continue_command_exit;
}
st->ss->getinfo_super(st, content, NULL);
if (!content->reshape_active)
sleep_for(3, 0, true);
else
break;
} while (cnt-- > 0);
} else {
char *container;
if (subarray) {
dprintf_cont("subarray (%s)\n", subarray);
container = st->container_devnm;
cfd = open_dev_excl(st->container_devnm);
} else {
container = st->devnm;
close(fd);
cfd = open_dev_excl(st->devnm);
dprintf_cont("container (%s)\n", container);
fd = cfd;
}
if (cfd < 0) {
pr_err("Unable to open container for %s\n", devname);
ret_val = 1;
goto Grow_continue_command_exit;
}
/* find in container array under reshape
*/
ret_val = st->ss->load_container(st, cfd, NULL);
if (ret_val) {
pr_err("Cannot read superblock for %s\n", devname);
ret_val = 1;
goto Grow_continue_command_exit;
}
cc = st->ss->container_content(st, subarray);
for (content = cc; content ; content = content->next) {
char *array_name;
int allow_reshape = 1;
if (content->reshape_active == 0)
continue;
/* The decision about array or container wide
* reshape is taken in Grow_continue based
* content->reshape_active state, therefore we
* need to check_reshape based on
* reshape_active and subarray name
*/
if (content->array.state & (1<<MD_SB_BLOCK_VOLUME))
allow_reshape = 0;
if (content->reshape_active == CONTAINER_RESHAPE &&
(content->array.state
& (1<<MD_SB_BLOCK_CONTAINER_RESHAPE)))
allow_reshape = 0;
if (!allow_reshape) {
pr_err("cannot continue reshape of an array in container with unsupported metadata: %s(%s)\n",
devname, container);
ret_val = 1;
goto Grow_continue_command_exit;
}
array_name = strchr(content->text_version+1, '/')+1;
mdstat = mdstat_by_subdev(array_name, container);
if (!mdstat)
continue;
if (mdstat->active == 0) {
pr_err("Skipping inactive array %s.\n",
mdstat->devnm);
free_mdstat(mdstat);
mdstat = NULL;
continue;
}
break;
}
if (!content) {
pr_err("Unable to determine reshaped array for %s\n", devname);
ret_val = 1;
goto Grow_continue_command_exit;
}
fd2 = open_dev(mdstat->devnm);
if (fd2 < 0) {
pr_err("cannot open (%s)\n", mdstat->devnm);
ret_val = 1;
goto Grow_continue_command_exit;
}
if (sysfs_init(content, fd2, mdstat->devnm)) {
pr_err("Unable to initialize sysfs for %s, Grow cannot continue.\n",
mdstat->devnm);
ret_val = 1;
close(fd2);
goto Grow_continue_command_exit;
}
close(fd2);
/* start mdmon in case it is not running
*/
if (!mdmon_running(container))
start_mdmon(container);
ping_monitor(container);
if (wait_for_mdmon(container) != MDADM_STATUS_SUCCESS) {
pr_err("No mdmon found. Grow cannot continue.\n");
ret_val = 1;
goto Grow_continue_command_exit;
}
}
/* verify that array under reshape is started from
* correct position
*/
if (verify_reshape_position(content, content->array.level) < 0) {
ret_val = 1;
goto Grow_continue_command_exit;
}
/* continue reshape
*/
ret_val = Grow_continue(fd, st, content, 1, c);
Grow_continue_command_exit:
if (cfd > -1)
close(cfd);
st->ss->free_super(st);
free_mdstat(mdstat);
sysfs_free(cc);
free(subarray);
return ret_val;
}
int Grow_continue(int mdfd, struct supertype *st, struct mdinfo *info,
int forked, struct context *c)
{
int ret_val = 2;
if (!info->reshape_active)
return ret_val;
if (st->ss->external) {
int cfd = open_dev(st->container_devnm);
if (cfd < 0)
return 1;
st->ss->load_container(st, cfd, st->container_devnm);
close(cfd);
ret_val = reshape_container(st->container_devnm, NULL, mdfd,
st, info, c, forked, 1 | info->reshape_active);
} else
ret_val = reshape_array(NULL, mdfd, "array", st, info, 1,
NULL, INVALID_SECTORS, c->backup_file,
0, forked, 1 | info->reshape_active,
c->freeze_reshape);
return ret_val;
}
char *make_backup(char *name)
{
char *base = "backup_file-";
int len;
char *fname;
len = strlen(MAP_DIR) + 1 + strlen(base) + strlen(name)+1;
fname = xmalloc(len);
sprintf(fname, "%s/%s%s", MAP_DIR, base, name);
return fname;
}
char *locate_backup(char *name)
{
char *fl = make_backup(name);
struct stat stb;
if (stat(fl, &stb) == 0 && S_ISREG(stb.st_mode))
return fl;
free(fl);
return NULL;
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。