4 Star 5 Fork 4

Gitee 极速下载/cryptopp

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
此仓库是为了提升国内下载速度的镜像仓库,每日同步一次。 原始仓库: https://github.com/weidai11/cryptopp
克隆/下载
rw.h 5.19 KB
一键复制 编辑 原始数据 按行查看 历史
Jeffrey Walton 提交于 2018-01-22 20:13 . Update documentation
// rw.h - originally written and placed in the public domain by Wei Dai
/// \file rw.h
/// \brief Classes for Rabin-Williams signature scheme
/// \details The implementation provides Rabin-Williams signature schemes as defined in
/// IEEE P1363. It uses Bernstein's tweaked square roots in place of square roots to
/// speedup calculations.
/// \sa <A HREF="http://cr.yp.to/sigs/rwsota-20080131.pdf">RSA signatures and Rabin–Williams
/// signatures: the state of the art (20080131)</A>, Section 6, <em>The tweaks e and f</em>.
/// \since Crypto++ 3.0
#ifndef CRYPTOPP_RW_H
#define CRYPTOPP_RW_H
#include "cryptlib.h"
#include "pubkey.h"
#include "integer.h"
NAMESPACE_BEGIN(CryptoPP)
/// \brief Rabin-Williams trapdoor function using the public key
/// \since Crypto++ 3.0, Tweaked roots using <em>e</em> and <em>f</em> since Crypto++ 5.6.4
class CRYPTOPP_DLL RWFunction : public TrapdoorFunction, public PublicKey
{
typedef RWFunction ThisClass;
public:
/// \brief Initialize a Rabin-Williams public key
/// \param n the modulus
void Initialize(const Integer &n)
{m_n = n;}
void BERDecode(BufferedTransformation &bt);
void DEREncode(BufferedTransformation &bt) const;
void Save(BufferedTransformation &bt) const
{DEREncode(bt);}
void Load(BufferedTransformation &bt)
{BERDecode(bt);}
Integer ApplyFunction(const Integer &x) const;
Integer PreimageBound() const {return ++(m_n>>1);}
Integer ImageBound() const {return m_n;}
bool Validate(RandomNumberGenerator &rng, unsigned int level) const;
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const;
void AssignFrom(const NameValuePairs &source);
const Integer& GetModulus() const {return m_n;}
void SetModulus(const Integer &n) {m_n = n;}
protected:
Integer m_n;
};
/// \brief Rabin-Williams trapdoor function using the private key
/// \since Crypto++ 3.0, Tweaked roots using <em>e</em> and <em>f</em> since Crypto++ 5.6.4
class CRYPTOPP_DLL InvertibleRWFunction : public RWFunction, public TrapdoorFunctionInverse, public PrivateKey
{
typedef InvertibleRWFunction ThisClass;
public:
/// \brief Construct an InvertibleRWFunction
InvertibleRWFunction() : m_precompute(false) {}
/// \brief Initialize a Rabin-Williams private key
/// \param n modulus
/// \param p first prime factor
/// \param q second prime factor
/// \param u q<sup>-1</sup> mod p
/// \details This Initialize() function overload initializes a private key from existing parameters.
void Initialize(const Integer &n, const Integer &p, const Integer &q, const Integer &u);
/// \brief Create a Rabin-Williams private key
/// \param rng a RandomNumberGenerator derived class
/// \param modulusBits the size of the modulus, in bits
/// \details This function overload of Initialize() creates a new private key because it
/// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
/// then use one of the other Initialize() overloads.
void Initialize(RandomNumberGenerator &rng, unsigned int modulusBits)
{GenerateRandomWithKeySize(rng, modulusBits);}
void BERDecode(BufferedTransformation &bt);
void DEREncode(BufferedTransformation &bt) const;
void Save(BufferedTransformation &bt) const
{DEREncode(bt);}
void Load(BufferedTransformation &bt)
{BERDecode(bt);}
Integer CalculateInverse(RandomNumberGenerator &rng, const Integer &x) const;
// GeneratibleCryptoMaterial
bool Validate(RandomNumberGenerator &rng, unsigned int level) const;
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const;
void AssignFrom(const NameValuePairs &source);
/*! parameters: (ModulusSize) */
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg);
const Integer& GetPrime1() const {return m_p;}
const Integer& GetPrime2() const {return m_q;}
const Integer& GetMultiplicativeInverseOfPrime2ModPrime1() const {return m_u;}
void SetPrime1(const Integer &p) {m_p = p;}
void SetPrime2(const Integer &q) {m_q = q;}
void SetMultiplicativeInverseOfPrime2ModPrime1(const Integer &u) {m_u = u;}
virtual bool SupportsPrecomputation() const {return true;}
virtual void Precompute(unsigned int unused = 0) {CRYPTOPP_UNUSED(unused); PrecomputeTweakedRoots();}
virtual void Precompute(unsigned int unused = 0) const {CRYPTOPP_UNUSED(unused); PrecomputeTweakedRoots();}
virtual void LoadPrecomputation(BufferedTransformation &storedPrecomputation);
virtual void SavePrecomputation(BufferedTransformation &storedPrecomputation) const;
protected:
void PrecomputeTweakedRoots() const;
protected:
Integer m_p, m_q, m_u;
mutable Integer m_pre_2_9p, m_pre_2_3q, m_pre_q_p;
mutable bool m_precompute;
};
/// \brief Rabin-Williams keys
/// \since Crypto++ 3.0
struct RW
{
CRYPTOPP_STATIC_CONSTEXPR const char* StaticAlgorithmName() {return "RW";}
typedef RWFunction PublicKey;
typedef InvertibleRWFunction PrivateKey;
};
/// \brief Rabin-Williams signature scheme
/// \tparam STANDARD signature standard
/// \tparam H hash transformation
/// \since Crypto++ 3.0
template <class STANDARD, class H>
struct RWSS : public TF_SS<RW, STANDARD, H>
{
};
NAMESPACE_END
#endif
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/mirrors/cryptopp.git
[email protected]:mirrors/cryptopp.git
mirrors
cryptopp
cryptopp
master

搜索帮助