代码拉取完成,页面将自动刷新
import argparse
import os
import matplotlib
matplotlib.use('AGG')
import matplotlib.pyplot as plt
import numpy as np
from keras.datasets import cifar10
from keras.layers import (Activation, Conv3D, Dense, Dropout, Flatten,
MaxPooling3D, BatchNormalization)
from keras.layers.advanced_activations import LeakyReLU
from keras.losses import categorical_crossentropy
from keras.models import Sequential
from keras.optimizers import Adam
from keras.utils import np_utils
from keras.utils.vis_utils import plot_model
from sklearn.model_selection import train_test_split
import videoto3d
from tqdm import tqdm
def plot_history(history, result_dir):
plt.plot(history.history['acc'], marker='.')
plt.plot(history.history['val_acc'], marker='.')
plt.title('model accuracy')
plt.xlabel('epoch')
plt.ylabel('accuracy')
plt.grid()
plt.legend(['acc', 'val_acc'], loc='lower right')
plt.savefig(os.path.join(result_dir, 'model_accuracy.png'))
plt.close()
plt.plot(history.history['loss'], marker='.')
plt.plot(history.history['val_loss'], marker='.')
plt.title('model loss')
plt.xlabel('epoch')
plt.ylabel('loss')
plt.grid()
plt.legend(['loss', 'val_loss'], loc='upper right')
plt.savefig(os.path.join(result_dir, 'model_loss.png'))
plt.close()
def save_history(history, result_dir):
loss = history.history['loss']
acc = history.history['acc']
val_loss = history.history['val_loss']
val_acc = history.history['val_acc']
nb_epoch = len(acc)
with open(os.path.join(result_dir, 'result.txt'), 'w') as fp:
fp.write('epoch\tloss\tacc\tval_loss\tval_acc\n')
for i in range(nb_epoch):
fp.write('{}\t{}\t{}\t{}\t{}\n'.format(
i, loss[i], acc[i], val_loss[i], val_acc[i]))
def loaddata(video_dir, vid3d, nclass, result_dir, color=False, skip=True):
files = os.listdir(video_dir)
X = []
labels = []
labellist = []
pbar = tqdm(total=len(files))
for filename in files:
pbar.update(1)
if filename == '.DS_Store':
continue
name = os.path.join(video_dir, filename)
label = vid3d.get_UCF_classname(filename)
if label not in labellist:
if len(labellist) >= nclass:
continue
labellist.append(label)
labels.append(label)
X.append(vid3d.video3d(name, color=color, skip=skip))
pbar.close()
with open(os.path.join(result_dir, 'classes.txt'), 'w') as fp:
for i in range(len(labellist)):
fp.write('{}\n'.format(labellist[i]))
for num, label in enumerate(labellist):
for i in range(len(labels)):
if label == labels[i]:
labels[i] = num
if color:
return np.array(X).transpose((0, 2, 3, 4, 1)), labels
else:
return np.array(X).transpose((0, 2, 3, 1)), labels
def main():
parser = argparse.ArgumentParser(
description='simple 3D convolution for action recognition')
parser.add_argument('--batch', type=int, default=128)
parser.add_argument('--epoch', type=int, default=100)
parser.add_argument('--videos', type=str, default='UCF101',
help='directory where videos are stored')
parser.add_argument('--nclass', type=int, default=101)
parser.add_argument('--output', type=str, required=True)
parser.add_argument('--color', type=bool, default=False)
parser.add_argument('--skip', type=bool, default=True)
parser.add_argument('--depth', type=int, default=10)
args = parser.parse_args()
img_rows, img_cols, frames = 32, 32, args.depth
channel = 3 if args.color else 1
fname_npz = 'dataset_{}_{}_{}.npz'.format(
args.nclass, args.depth, args.skip)
vid3d = videoto3d.Videoto3D(img_rows, img_cols, frames)
nb_classes = args.nclass
if os.path.exists(fname_npz):
loadeddata = np.load(fname_npz)
X, Y = loadeddata["X"], loadeddata["Y"]
else:
x, y = loaddata(args.videos, vid3d, args.nclass,
args.output, args.color, args.skip)
X = x.reshape((x.shape[0], img_rows, img_cols, frames, channel))
Y = np_utils.to_categorical(y, nb_classes)
X = X.astype('float32')
#np.savez(fname_npz, X=X, Y=Y)
#print('Saved dataset to dataset.npz.')
print('X_shape:{}\nY_shape:{}'.format(X.shape, Y.shape))
# Define model
model = Sequential()
model.add(Conv3D(32, kernel_size=(3, 3, 3), input_shape=(
X.shape[1:]), padding="same"))
model.add(LeakyReLU())
model.add(Conv3D(32, padding="same", kernel_size=(3, 3, 3)))
model.add(LeakyReLU())
model.add(MaxPooling3D(pool_size=(3, 3, 3), padding="same"))
model.add(Dropout(0.25))
model.add(Conv3D(64, padding="same", kernel_size=(3, 3, 3)))
model.add(LeakyReLU())
model.add(Conv3D(64, padding="same", kernel_size=(3, 3, 3)))
model.add(LeakyReLU())
model.add(MaxPooling3D(pool_size=(3, 3, 3), padding="same"))
model.add(Dropout(0.25))
model.add(Conv3D(64, padding="same", kernel_size=(3, 3, 3)))
model.add(LeakyReLU())
model.add(Conv3D(64, padding="same", kernel_size=(3, 3, 3)))
model.add(LeakyReLU())
model.add(MaxPooling3D(pool_size=(3, 3, 3), padding="same"))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(BatchNormalization())
model.add(Dropout(0.5))
model.add(Dense(nb_classes, activation='softmax'))
model.compile(loss=categorical_crossentropy,
optimizer='rmsprop', metrics=['accuracy'])
model.summary()
plot_model(model, show_shapes=True,
to_file=os.path.join(args.output, 'model.png'))
X_train, X_test, Y_train, Y_test = train_test_split(
X, Y, test_size=0.2, random_state=43)
history = model.fit(X_train, Y_train, validation_data=(X_test, Y_test), batch_size=args.batch,
epochs=args.epoch, verbose=1, shuffle=True)
model.evaluate(X_test, Y_test, verbose=0)
model_json = model.to_json()
if not os.path.isdir(args.output):
os.makedirs(args.output)
with open(os.path.join(args.output, 'ucf101_3dcnnmodel.json'), 'w') as json_file:
json_file.write(model_json)
model.save_weights(os.path.join(args.output, 'ucf101_3dcnnmodel.hd5'))
loss, acc = model.evaluate(X_test, Y_test, verbose=0)
print('Test loss:', loss)
print('Test accuracy:', acc)
plot_history(history, args.output)
save_history(history, args.output)
if __name__ == '__main__':
main()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。