代码拉取完成,页面将自动刷新
char *strchr(const char *s, int c); //该函数返回第一次在str中出现字符c的位置
char *strrchr(const char *s, int c); //该函数返回最后一次在str中出现字符c的位置
第一 epoll接口设计特点
1.epoll创建了一颗红黑树,红黑树在增加和删除操作效率高;
2.epoll红黑树采用事件异步唤醒,内核监听I/O,事件发生后内核搜索红黑树并将对应节点放入异步唤醒的时间队列中;
3.epoll的数据从用户空间到内核空间采用mmap存储IO映射
epoll 采用的是时间驱动,在用户空间获取事件时,不需要去遍历被监听描述符集合所有的文件描述符,而是遍历那些被内核I/O事件异步唤醒之后加入到就绪队列并返回到用户空间的描述符集合。
第二:epoll的 API使用说明
////创建一个epoll 对象,返回值可以理解为红黑树的根节点
1.int epoll_create(int size);
//想epoll对象中添加或者删除操作(上树或或者下树操作)
2. int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
op:
EPOLL_CTL_ADD:上树操作(注册新的fd到epfd)
EPOLL_CTL_MOD:修改event(修改已注册的fd事件)
EPOLL_CTL_DEL:下树操作 (从epfd中删除fd)
fd:待监听的fd
event: 待监听的事件
typedef union epoll_data {
void *ptr;
int fd;
uint32_t u32;
uint64_t u64;
} epoll_data_t;
struct epoll_event {
uint32_t events; /* Epoll events */
epoll_data_t data; /* User data variable */
};
events 常用的宏:
EPOLLIN
EPOLLOUT
EPOLLET
3.int epoll_wait(int epfd, struct epoll_event *events,
int maxevents, int timeout);
返回已经发生更改的文件描述符的个数,发生更改的文件描述符保存在 events[i]中
timeout -1表示阻塞等待 0相当于非阻塞
第三 epoll的两种触发模式
1.水平触发模式(LT 模式) 默认模式 支持阻塞和非阻塞socket
2.边沿触发模式(ET 模式) 只能用在非阻塞的socket
假如有这样的例子:
LT方式,即默认方式下,内核会继续通知,可以读数据,ET方式下,内核不会再通知,可以读数据
1.把用来从管道中读取数据的文件句柄rfd添加到epoll描述符
2.这个时候从管道的另一端写入2k数据
3.调用epoll_wait,并且他会返回rfd,说明rfd有可读取的事件
4.读取1kb数据
5.调用epoll_wait...
使用上面例子说明边沿触发(ET)工作模式:
如果在第一步将rfd添加到epoll描述符的时候使用了EPOLLET标志,那么在第五步的时候就会挂起,因为剩余的数据还在文件的输入缓存区内,而且数据发出短还在等待一个针对已经发出数据的反馈信息。只有在电视的文件句柄上发生了某个时间的时候ET工作模式才会汇报时间。因此第五步的时候,调用者可能会放弃等待存在于文件输入缓存区内剩余的数据。epoll工作在ET模式的时候,必须使用非阻塞套接口,一避免由于一个文件句柄的阻塞读/阻塞写操作把处理多个文件描述符的任务饿死(LT方式可以解决这种缺陷),最好已下面的方式调用ET模式的epoll接口
(1) 基于非阻塞文件句柄
(2) 只有当read 或者write 返回EAGAIN(认为读完)时才需要挂起,等待;但这并不是说每次read是都需要循环读,直到读到产生一个EAGAIN才认为此事件处理完成。当read返回的的读到的数据长度小于请求的数据长度时(小于sizeof(buf)),就可以确定缓存区没有数据了
-------------------------------------------------------------------------------------------------------------------------------------------
反应堆模型demo:
#include <stdio.h>
#include <sys/socket.h>
#include <sys/epoll.h>
#include <arpa/inet.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#define MAX_EVENTS 1024 /*监听上限*/
#define BUFLEN 4096 /*缓存区大小*/
#define SERV_PORT 6666 /*端口号*/
void recvdata(int fd,int events,void *arg);
void senddata(int fd,int events,void *arg);
/*描述就绪文件描述符的相关信息*/
struct myevent_s
{
int fd; //要监听的文件描述符
int events; //对应的监听事件,EPOLLIN和EPLLOUT
void *arg; //指向自己结构体指针
void (*call_back)(int fd,int events,void *arg); //回调函数
int status; //是否在监听:1->在红黑树上(监听), 0->不在(不监听)
char buf[BUFLEN];
int len;
long last_active; //记录每次加入红黑树 g_efd 的时间值
};
int g_efd; //全局变量,作为红黑树根
struct myevent_s g_events[MAX_EVENTS+1]; //自定义结构体类型数组. +1-->listen fd
/*
* 封装一个自定义事件,包括fd,这个fd的回调函数,还有一个额外的参数项
* 注意:在封装这个事件的时候,为这个事件指明了回调函数,一般来说,一个fd只对一个特定的事件
* 感兴趣,当这个事件发生的时候,就调用这个回调函数
*/
void eventset(struct myevent_s *ev, int fd, void (*call_back)(int fd,int events,void *arg), void *arg)
{
ev->fd = fd;
ev->call_back = call_back;
ev->events = 0;
ev->arg = arg;
ev->status = 0;
if(ev->len <= 0)
{
memset(ev->buf, 0, sizeof(ev->buf));
ev->len = 0;
}
ev->last_active = time(NULL); //调用eventset函数的时间
return;
}
/* 向 epoll监听的红黑树 添加一个文件描述符 */
void eventadd(int efd, int events, struct myevent_s *ev)
{
struct epoll_event epv={0, {0}};
int op = 0;
epv.data.ptr = ev; // ptr指向一个结构体(之前的epoll模型红黑树上挂载的是文件描述符cfd和lfd,现在是ptr指针)
epv.events = ev->events = events; //EPOLLIN 或 EPOLLOUT
if(ev->status == 0) //status 说明文件描述符是否在红黑树上 0不在,1 在
{
op = EPOLL_CTL_ADD; //将其加入红黑树 g_efd, 并将status置1
ev->status = 1;
}
if(epoll_ctl(efd, op, ev->fd, &epv) < 0) // 添加一个节点
printf("event add failed [fd=%d],events[%d]\n", ev->fd, events);
else
printf("event add OK [fd=%d],events[%0X]\n", ev->fd, events);
return;
}
/* 从epoll 监听的 红黑树中删除一个文件描述符*/
void eventdel(int efd,struct myevent_s *ev)
{
struct epoll_event epv = {0, {0}};
if(ev->status != 1) //如果fd没有添加到监听树上,就不用删除,直接返回
return;
epv.data.ptr = NULL;
ev->status = 0;
epoll_ctl(efd, EPOLL_CTL_DEL, ev->fd, &epv);
return;
}
/* 当有文件描述符就绪, epoll返回, 调用该函数与客户端建立链接 */
void acceptconn(int lfd,int events,void *arg)
{
struct sockaddr_in cin;
socklen_t len = sizeof(cin);
int cfd, i;
if((cfd = accept(lfd, (struct sockaddr *)&cin, &len)) == -1)
{
if(errno != EAGAIN && errno != EINTR)
{
sleep(1);
}
printf("%s:accept,%s\n",__func__, strerror(errno));
return;
}
do
{
for(i = 0; i < MAX_EVENTS; i++) //从全局数组g_events中找一个空闲元素,类似于select中找值为-1的元素
{
if(g_events[i].status ==0)
break;
}
if(i == MAX_EVENTS) // 超出连接数上限
{
printf("%s: max connect limit[%d]\n", __func__, MAX_EVENTS);
break;
}
int flag = 0;
if((flag = fcntl(cfd, F_SETFL, O_NONBLOCK)) < 0) //将cfd也设置为非阻塞
{
printf("%s: fcntl nonblocking failed, %s\n", __func__, strerror(errno));
break;
}
eventset(&g_events[i], cfd, recvdata, &g_events[i]); //找到合适的节点之后,将其添加到监听树中,并监听读事件
eventadd(g_efd, EPOLLIN, &g_events[i]);
}while(0);
printf("new connect[%s:%d],[time:%ld],pos[%d]",inet_ntoa(cin.sin_addr), ntohs(cin.sin_port), g_events[i].last_active, i);
return;
}
/*读取客户端发过来的数据的函数*/
void recvdata(int fd, int events, void *arg)
{
struct myevent_s *ev = (struct myevent_s *)arg;
int len;
len = recv(fd, ev->buf, sizeof(ev->buf), 0); //读取客户端发过来的数据
eventdel(g_efd, ev); //将该节点从红黑树上摘除
if (len > 0)
{
ev->len = len;
ev->buf[len] = '\0'; //手动添加字符串结束标记
printf("C[%d]:%s\n", fd, ev->buf);
eventset(ev, fd, senddata, ev); //设置该fd对应的回调函数为senddata
eventadd(g_efd, EPOLLOUT, ev); //将fd加入红黑树g_efd中,监听其写事件
}
else if (len == 0)
{
close(ev->fd);
/* ev-g_events 地址相减得到偏移元素位置 */
printf("[fd=%d] pos[%ld], closed\n", fd, ev-g_events);
}
else
{
close(ev->fd);
printf("recv[fd=%d] error[%d]:%s\n", fd, errno, strerror(errno));
}
return;
}
/*发送给客户端数据*/
void senddata(int fd, int events, void *arg)
{
struct myevent_s *ev = (struct myevent_s *)arg;
int len;
len = send(fd, ev->buf, ev->len, 0); //直接将数据回射给客户端
eventdel(g_efd, ev); //从红黑树g_efd中移除
if (len > 0)
{
printf("send[fd=%d], [%d]%s\n", fd, len, ev->buf);
eventset(ev, fd, recvdata, ev); //将该fd的回调函数改为recvdata
eventadd(g_efd, EPOLLIN, ev); //重新添加到红黑树上,设为监听读事件
}
else
{
close(ev->fd); //关闭链接
printf("send[fd=%d] error %s\n", fd, strerror(errno));
}
return ;
}
/*创建 socket, 初始化lfd */
void initlistensocket(int efd, short port)
{
struct sockaddr_in sin;
int lfd = socket(AF_INET, SOCK_STREAM, 0);
fcntl(lfd, F_SETFL, O_NONBLOCK); //将socket设为非阻塞
memset(&sin, 0, sizeof(sin)); //bzero(&sin, sizeof(sin))
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_port = htons(port);
bind(lfd, (struct sockaddr *)&sin, sizeof(sin));
listen(lfd, 20);
/* void eventset(struct myevent_s *ev, int fd, void (*call_back)(int, int, void *), void *arg); */
eventset(&g_events[MAX_EVENTS], lfd, acceptconn, &g_events[MAX_EVENTS]);
/* void eventadd(int efd, int events, struct myevent_s *ev) */
eventadd(efd, EPOLLIN, &g_events[MAX_EVENTS]); //将lfd添加到监听树上,监听读事件
return;
}
int main()
{
int port=SERV_PORT;
g_efd = epoll_create(MAX_EVENTS + 1); //创建红黑树,返回给全局 g_efd
if(g_efd <= 0)
printf("create efd in %s err %s\n", __func__, strerror(errno));
initlistensocket(g_efd, port); //初始化监听socket
struct epoll_event events[MAX_EVENTS + 1]; //定义这个结构体数组,用来接收epoll_wait传出的满足监听事件的fd结构体
printf("server running:port[%d]\n", port);
int checkpos = 0;
int i;
while(1)
{
/* long now = time(NULL);
for(i=0; i < 100; i++, checkpos++)
{
if(checkpos == MAX_EVENTS);
checkpos = 0;
if(g_events[checkpos].status != 1)
continue;
long duration = now -g_events[checkpos].last_active;
if(duration >= 60)
{
close(g_events[checkpos].fd);
printf("[fd=%d] timeout\n", g_events[checkpos].fd);
eventdel(g_efd, &g_events[checkpos]);
}
} */
//调用eppoll_wait等待接入的客户端事件,epoll_wait传出的是满足监听条件的那些fd的struct epoll_event类型
int nfd = epoll_wait(g_efd, events, MAX_EVENTS+1, 1000);
if (nfd < 0)
{
printf("epoll_wait error, exit\n");
exit(-1);
}
for(i = 0; i < nfd; i++)
{
//evtAdd()函数中,添加到监听树中监听事件的时候将myevents_t结构体类型给了ptr指针
//这里epoll_wait返回的时候,同样会返回对应fd的myevents_t类型的指针
struct myevent_s *ev = (struct myevent_s *)events[i].data.ptr;
//如果监听的是读事件,并返回的是读事件
if((events[i].events & EPOLLIN) &&(ev->events & EPOLLIN))
{
ev->call_back(ev->fd, events[i].events, ev->arg);
}
//如果监听的是写事件,并返回的是写事件
if((events[i].events & EPOLLOUT) && (ev->events & EPOLLOUT))
{
ev->call_back(ev->fd, events[i].events, ev->arg);
}
}
}
return 0;
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。