1 Star 0 Fork 0

xxl1j2n/onnx-tensorrt

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
onnx_trt_backend.cpp 34.73 KB
一键复制 编辑 原始数据 按行查看 历史
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055
#include "NvOnnxParser.h"
#include "common.hpp"
#include "onnx/onnxifi.h"
#include <cuda_runtime.h>
#include <NvInfer.h>
#include <atomic>
#include <ctime>
#include <mutex>
#include <thrust/device_vector.h>
#include <unordered_map>
#define BACKEND_NAME "TensorRT"
#define BACKEND_VENDOR "Nvidia"
#define BACKEND_VERSION "1.0.0"
#define BACKEND_EXTENSIONS ""
#define BACKEND_IR_VERSION "3"
#define BACKEND_OPSET_VERSION "ai.onnx:7"
namespace {
struct InferDeleter {
template <typename T> void operator()(T *obj) const {
if (obj) {
obj->destroy();
}
}
};
template <typename T> inline std::shared_ptr<T> infer_object(T *obj) {
if (!obj) {
throw std::runtime_error("Failed to create object");
}
return std::shared_ptr<T>(obj, InferDeleter());
}
// Logger for GIE info/warning/errors
class TRT_Logger : public nvinfer1::ILogger {
nvinfer1::ILogger::Severity _verbosity;
std::ostream *_ostream;
public:
TRT_Logger(Severity verbosity = Severity::kWARNING,
std::ostream &ostream = std::cout)
: _verbosity(verbosity), _ostream(&ostream) {}
void log(Severity severity, const char *msg) override {
if (severity <= _verbosity) {
time_t rawtime = std::time(0);
char buf[256];
strftime(&buf[0], 256, "%Y-%m-%d %H:%M:%S", std::gmtime(&rawtime));
const char *sevstr =
(severity == Severity::kINTERNAL_ERROR
? " BUG"
: severity == Severity::kERROR
? " ERROR"
: severity == Severity::kWARNING
? "WARNING"
: severity == Severity::kINFO ? " INFO"
: "UNKNOWN");
(*_ostream) << "[" << buf << " " << sevstr << "] " << msg << std::endl;
}
}
};
onnxStatus CheckShape(const nvinfer1::Dims &dims,
const onnxTensorDescriptorV1 &desc,
bool allow_same_size) {
bool matched = false;
if (desc.dimensions == static_cast<uint32_t>(dims.nbDims) + 1) {
matched = true;
for (int i = 0; i < dims.nbDims; ++i) {
if (desc.shape[i + 1] != static_cast<uint64_t>(dims.d[i])) {
return ONNXIFI_STATUS_MISMATCHING_SHAPE;
}
}
} else if (allow_same_size && desc.dimensions > 1) {
size_t dim_size = 1;
for (int i = 0; i < dims.nbDims; ++i) {
dim_size *= dims.d[i];
}
size_t desc_size = 1;
// Skip the first dim which is batch size
for (uint32_t i = 1; i < desc.dimensions; ++i) {
desc_size *= desc.shape[i];
}
matched = (dim_size == desc_size) ? true : false;
if (!matched) {
std::cerr << "mismatched output " << desc.name << ": " << desc_size
<< " vs " << dim_size << std::endl;
}
}
return matched ? ONNXIFI_STATUS_SUCCESS : ONNXIFI_STATUS_MISMATCHING_SHAPE;
}
size_t GetTensorFootprint(const onnxTensorDescriptorV1 &input) {
size_t acc = 1;
for (unsigned i = 0; i < input.dimensions; ++i) {
acc *= input.shape[i];
}
size_t multiplier = 1;
switch (input.dataType) {
case ONNXIFI_DATATYPE_FLOAT16:
multiplier = sizeof(float) / 2;
break;
case ONNXIFI_DATATYPE_FLOAT32:
multiplier = sizeof(float);
break;
case ONNXIFI_DATATYPE_INT8:
multiplier = sizeof(int8_t);
break;
case ONNXIFI_DATATYPE_INT16:
multiplier = sizeof(int16_t);
break;
case ONNXIFI_DATATYPE_INT32:
multiplier = sizeof(int32_t);
break;
case ONNXIFI_DATATYPE_UINT8:
multiplier = sizeof(uint8_t);
break;
case ONNXIFI_DATATYPE_UINT16:
multiplier = sizeof(uint16_t);
break;
case ONNXIFI_DATATYPE_UINT32:
multiplier = sizeof(uint32_t);
break;
default:
multiplier = 0;
}
return acc * multiplier;
}
struct OnnxTensorRTBackendID {
OnnxTensorRTBackendID(int i) : device_id(i) {}
int device_id{0};
};
class OnnxTensorRTEvent {
public:
OnnxTensorRTEvent(cudaStream_t s) : stream_(s) {
if (cudaEventCreateWithFlags(&event_, cudaEventDisableTiming) !=
cudaSuccess) {
throw std::runtime_error("Cannot create cudaEvent");
}
}
~OnnxTensorRTEvent() { cudaEventDestroy(event_); }
onnxStatus Signal() {
std::lock_guard<std::mutex> guard(mutex_);
if (fired_) {
return ONNXIFI_STATUS_INVALID_STATE;
}
if (cudaEventRecord(event_, stream_) == cudaSuccess) {
fired_ = true;
return ONNXIFI_STATUS_SUCCESS;
} else {
return ONNXIFI_STATUS_INTERNAL_ERROR;
}
}
onnxStatus Wait() {
std::lock_guard<std::mutex> guard(mutex_);
return (cudaEventSynchronize(event_) == cudaSuccess)
? ONNXIFI_STATUS_SUCCESS
: ONNXIFI_STATUS_INTERNAL_ERROR;
}
onnxStatus CheckState(onnxEventState *state) {
std::lock_guard<std::mutex> guard(mutex_);
if (!fired_) {
*state = ONNXIFI_EVENT_STATE_NONSIGNALLED;
return ONNXIFI_STATUS_SUCCESS;
}
auto rt = cudaEventQuery(event_);
if (rt == cudaErrorNotReady) {
*state = ONNXIFI_EVENT_STATE_NONSIGNALLED;
return ONNXIFI_STATUS_SUCCESS;
} else if (rt == cudaSuccess) {
*state = ONNXIFI_EVENT_STATE_SIGNALLED;
return ONNXIFI_STATUS_SUCCESS;
} else {
*state = ONNXIFI_EVENT_STATE_INVALID;
return ONNXIFI_STATUS_INVALID_STATE;
}
}
private:
std::mutex mutex_;
std::atomic<bool> fired_{false};
cudaStream_t stream_{0};
cudaEvent_t event_;
};
class CudaDeviceGuard {
public:
CudaDeviceGuard(int backend_id) {
if (cudaGetDevice(&saved_device_) != cudaSuccess) {
throw std::runtime_error("Cannot run cudaGetDevice");
}
if (saved_device_ != backend_id) {
if (cudaSetDevice(backend_id) != cudaSuccess) {
throw std::runtime_error("Cannot run cudaSetDevice");
}
need_restore_ = true;
}
}
~CudaDeviceGuard() {
if (need_restore_) {
cudaSetDevice(saved_device_);
}
}
private:
int saved_device_{-1};
bool need_restore_{false};
};
class OnnxTensorRTBackendRep {
public:
OnnxTensorRTBackendRep(const OnnxTensorRTBackendID &backend_id)
: device_id_(backend_id.device_id) {
trt_builder_ = infer_object(nvinfer1::createInferBuilder(trt_logger_));
trt_builder_->setMaxBatchSize(max_batch_size_);
trt_builder_->setMaxWorkspaceSize(max_workspace_size_);
trt_network_ = infer_object(trt_builder_->createNetwork());
parser_ = infer_object(
nvonnxparser::createParser(*trt_network_, trt_logger_));
CudaDeviceGuard guard(device_id_);
if (cudaStreamCreate(&stream_) != cudaSuccess) {
throw std::runtime_error("Cannot create cudaStream");
}
}
~OnnxTensorRTBackendRep() { cudaStreamDestroy(stream_); }
int device_id() const { return device_id_; }
cudaStream_t stream() const { return stream_; }
onnxStatus ImportModel(void const *serialized_onnx_model,
size_t serialized_onnx_model_size,
uint32_t weight_count,
onnxTensorDescriptorV1 const *weight_descriptors) {
auto succeeded = parser_->parseWithWeightDescriptors(
serialized_onnx_model, serialized_onnx_model_size, weight_count,
weight_descriptors);
if (!succeeded) {
const auto num_errors = parser_->getNbErrors();
if (num_errors > 0) {
const auto *error = parser_->getError(num_errors - 1);
std::cerr << "Parsing error: " << error->desc() << " at "
<< error->file() << ":" << error->line() << " ("
<< error->func() << ")." << std::endl;
switch (error->code()) {
case nvonnxparser::ErrorCode::kMEM_ALLOC_FAILED:
return ONNXIFI_STATUS_NO_SYSTEM_MEMORY;
case nvonnxparser::ErrorCode::kMODEL_DESERIALIZE_FAILED:
return ONNXIFI_STATUS_INVALID_PROTOBUF;
case nvonnxparser::ErrorCode::kINVALID_VALUE:
return ONNXIFI_STATUS_UNSUPPORTED_ATTRIBUTE;
case nvonnxparser::ErrorCode::kINVALID_GRAPH:
case nvonnxparser::ErrorCode::kINVALID_NODE:
return ONNXIFI_STATUS_INVALID_MODEL;
case nvonnxparser::ErrorCode::kUNSUPPORTED_NODE:
case nvonnxparser::ErrorCode::kUNSUPPORTED_GRAPH:
return ONNXIFI_STATUS_UNSUPPORTED_OPERATOR;
default:
return ONNXIFI_STATUS_INTERNAL_ERROR;
}
}
}
return ONNXIFI_STATUS_SUCCESS;
}
nvinfer1::ICudaEngine *buildCudaEngine() {
return trt_builder_->buildCudaEngine(*trt_network_);
}
size_t max_batch_size() const { return max_batch_size_; }
private:
TRT_Logger trt_logger_;
cudaStream_t stream_;
std::shared_ptr<nvinfer1::IBuilder> trt_builder_{nullptr};
std::shared_ptr<nvinfer1::INetworkDefinition> trt_network_{nullptr};
std::shared_ptr<nvonnxparser::IParser> parser_{nullptr};
// TODO: configerable max batch size
int device_id_{0};
size_t max_batch_size_{128};
size_t max_workspace_size_{1024UL * 1024UL * 1024UL * 2UL};
};
class GraphRep {
public:
GraphRep(OnnxTensorRTBackendRep *backendrep)
: device_id_(backendrep->device_id()),
max_batch_size_(backendrep->max_batch_size()),
stream_(backendrep->stream()) {
if (cudaSetDevice(device_id_) != cudaSuccess) {
throw std::runtime_error("Cannot set CUDA device");
}
trt_engine_ = infer_object(backendrep->buildCudaEngine());
max_batch_size_ = backendrep->max_batch_size();
}
~GraphRep() { ClearDeviceBuffers(); }
onnxStatus InitIO(uint32_t inputsCount,
const onnxTensorDescriptorV1 *inputDescriptors,
uint32_t outputsCount,
const onnxTensorDescriptorV1 *outputDescriptors);
onnxStatus Run();
cudaStream_t stream() const { return stream_; }
private:
void ClearDeviceBuffers();
onnxStatus CheckAndBindTensor(const nvinfer1::Dims &dims,
const onnxTensorDescriptorV1 &tensor,
bool is_output);
std::shared_ptr<nvinfer1::ICudaEngine> trt_engine_{nullptr};
std::shared_ptr<nvinfer1::IExecutionContext> trt_executor_{nullptr};
std::vector<void *> bindings_;
std::unordered_map<std::string, const onnxTensorDescriptorV1 *> input_map_;
std::unordered_map<std::string, const onnxTensorDescriptorV1 *> output_map_;
std::unordered_map<std::string, void *> device_buffers_;
int device_id_{0};
size_t max_batch_size_{0};
size_t batch_size_{0};
cudaStream_t stream_;
};
void GraphRep::ClearDeviceBuffers() {
for (auto kv : device_buffers_) {
cudaFree(kv.second);
}
device_buffers_.clear();
}
onnxStatus GraphRep::CheckAndBindTensor(const nvinfer1::Dims &dims,
const onnxTensorDescriptorV1 &tensor,
bool is_output) {
// Check memory type
if (tensor.memoryType != ONNXIFI_MEMORY_TYPE_CPU &&
tensor.memoryType != ONNXIFI_MEMORY_TYPE_CUDA_BUFFER) {
return ONNXIFI_STATUS_INVALID_DATATYPE;
}
// Check tensor shape
auto ret = CheckShape(dims, tensor, is_output);
if (ret != ONNXIFI_STATUS_SUCCESS) {
return ret;
}
// For CPU tensor, we need to create a device memory and the bind. For CUDA
// tensor, we can bind directly
if (tensor.memoryType == ONNXIFI_MEMORY_TYPE_CPU) {
void *cuda_buffer;
size_t footprint = GetTensorFootprint(tensor);
if (!footprint) {
return ONNXIFI_STATUS_INVALID_SHAPE;
}
if (cudaMalloc(&cuda_buffer, footprint) != cudaSuccess) {
return ONNXIFI_STATUS_NO_DEVICE_MEMORY;
}
device_buffers_.emplace(tensor.name, cuda_buffer);
bindings_.push_back(cuda_buffer);
} else {
bindings_.push_back((void *)(tensor.buffer));
}
return ONNXIFI_STATUS_SUCCESS;
}
onnxStatus GraphRep::InitIO(uint32_t inputsCount,
const onnxTensorDescriptorV1 *inputDescriptors,
uint32_t outputsCount,
const onnxTensorDescriptorV1 *outputDescriptors) {
CudaDeviceGuard guard(device_id_);
ClearDeviceBuffers();
// Setup the input/output bindings and decide batch size
for (unsigned i = 0; i < inputsCount; ++i) {
if (inputDescriptors[i].tag != ONNXIFI_TAG_TENSOR_DESCRIPTOR_V1) {
return ONNXIFI_STATUS_UNSUPPORTED_TAG;
}
if (!inputDescriptors[i].name) {
return ONNXIFI_STATUS_INVALID_NAME;
}
// We only support NCHW
if (inputDescriptors[i].dimensions != 4) {
return ONNXIFI_STATUS_INVALID_SHAPE;
}
if (i == 0) {
batch_size_ = inputDescriptors[i].shape[0];
} else {
if (batch_size_ != inputDescriptors[i].shape[0]) {
return ONNXIFI_STATUS_INVALID_SHAPE;
}
}
std::cerr << "Adding input " << i << ": " << inputDescriptors[i].name
<< ", type: " << inputDescriptors[i].memoryType << std::endl;
input_map_.emplace(std::string(inputDescriptors[i].name),
inputDescriptors + i);
}
// We don't support the case when batch size is larger than max batch size
// yet, but this is not a hard constraint.
if (batch_size_ > max_batch_size_) {
return ONNXIFI_STATUS_NO_DEVICE_RESOURCES;
}
for (unsigned i = 0; i < outputsCount; ++i) {
if (outputDescriptors[i].tag != ONNXIFI_TAG_TENSOR_DESCRIPTOR_V1) {
return ONNXIFI_STATUS_UNSUPPORTED_TAG;
}
if (!outputDescriptors[i].name) {
return ONNXIFI_STATUS_INVALID_NAME;
}
output_map_.emplace(std::string(outputDescriptors[i].name),
outputDescriptors + i);
}
int nbindings = trt_engine_->getNbBindings();
for (int b = 0; b < nbindings; ++b) {
nvinfer1::Dims dims = trt_engine_->getBindingDimensions(b);
// Check data type consistency
auto binding_datatype = trt_engine_->getBindingDataType(b);
if (binding_datatype != nvinfer1::DataType::kFLOAT) {
return ONNXIFI_STATUS_MISMATCHING_DATATYPE;
}
if (trt_engine_->bindingIsInput(b)) {
std::cerr << "Input: " << trt_engine_->getBindingName(b)
<< ", Dim: " << dims.d[0] << ", " << dims.d[1] << ", "
<< dims.d[2] << std::endl;
const auto it = input_map_.find(trt_engine_->getBindingName(b));
if (it == input_map_.end()) {
return ONNXIFI_STATUS_UNIDENTIFIED_NAME;
}
if (auto ret = CheckAndBindTensor(dims, *it->second, false) !=
ONNXIFI_STATUS_SUCCESS) {
return ret;
}
} else {
// output: for output, we enforce 4D dim although it can be in 2D, we do
// an implicit reshape in `CheckAndBindTensor`
const auto it = output_map_.find(trt_engine_->getBindingName(b));
if (it == output_map_.end()) {
return ONNXIFI_STATUS_UNIDENTIFIED_NAME;
}
if (auto ret = CheckAndBindTensor(dims, *it->second, true) !=
ONNXIFI_STATUS_SUCCESS) {
return ret;
}
}
}
trt_executor_ = infer_object(trt_engine_->createExecutionContext());
return ONNXIFI_STATUS_SUCCESS;
}
onnxStatus GraphRep::Run() {
CudaDeviceGuard guard(device_id_);
// Copy input if necessary
// TODO: cache tensor footprint
for (auto kv : device_buffers_) {
auto it = input_map_.find(kv.first);
if (it != input_map_.end()) {
cudaMemcpyAsync(kv.second, (void *)(it->second->buffer),
GetTensorFootprint(*it->second), cudaMemcpyHostToDevice,
stream_);
} else if (output_map_.find(kv.first) == output_map_.end()) {
return ONNXIFI_STATUS_UNIDENTIFIED_NAME;
}
}
// Run TensorRT
trt_executor_->enqueue(batch_size_, bindings_.data(), stream_, nullptr);
// Copy output if necessary
for (auto kv : device_buffers_) {
auto it = output_map_.find(kv.first);
if (it != output_map_.end()) {
cudaMemcpyAsync((void *)(it->second->buffer), kv.second,
GetTensorFootprint(*it->second), cudaMemcpyDeviceToHost,
stream_);
} else if (input_map_.find(kv.first) == input_map_.end()) {
return ONNXIFI_STATUS_UNIDENTIFIED_NAME;
}
}
return ONNXIFI_STATUS_SUCCESS;
}
template <class F> onnxStatus OnnxifiTryCatch(F &&tryBlock) {
try {
return tryBlock();
} catch (const std::bad_alloc &e) {
std::cerr << "Allocation failed: " << e.what() << std::endl;
return ONNXIFI_STATUS_NO_SYSTEM_MEMORY;
} catch (const std::exception &e) {
std::cerr << "Internal Error: " << e.what() << std::endl;
return ONNXIFI_STATUS_INTERNAL_ERROR;
} catch (...) {
return ONNXIFI_STATUS_INTERNAL_ERROR;
}
}
} // namespace
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI
onnxGetBackendIDs(onnxBackendID *backendIDs, size_t *numBackends) {
return OnnxifiTryCatch([&] {
if (!numBackends) {
return ONNXIFI_STATUS_INVALID_POINTER;
}
int nDevices_int{0};
cudaGetDeviceCount(&nDevices_int);
size_t nDevices{static_cast<size_t>(nDevices_int)};
if (!backendIDs) {
*numBackends = nDevices;
return ONNXIFI_STATUS_FALLBACK;
} else {
size_t len = (*numBackends < nDevices) ? (*numBackends) : nDevices;
std::vector<std::unique_ptr<OnnxTensorRTBackendID>> vtmp;
for (size_t i = 0; i < len; ++i) {
vtmp.emplace_back(new OnnxTensorRTBackendID(i));
}
for (size_t i = 0; i < len; ++i) {
backendIDs[i] = (onnxBackendID)(vtmp[i].release());
}
return (*numBackends < nDevices) ? ONNXIFI_STATUS_FALLBACK
: ONNXIFI_STATUS_SUCCESS;
}
});
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI
onnxReleaseBackendID(onnxBackendID backendID) {
return OnnxifiTryCatch([&] {
auto *backend_id = reinterpret_cast<OnnxTensorRTBackendID *>(backendID);
if (!backend_id) {
return ONNXIFI_STATUS_INVALID_ID;
}
delete backend_id;
return ONNXIFI_STATUS_SUCCESS;
});
}
static onnxStatus setUIntInfo(
void* valuePtr,
size_t *valueSizePtr,
uint64_t value)
{
onnxStatus status = ONNXIFI_STATUS_FALLBACK;
if (valuePtr != nullptr && *valueSizePtr >= sizeof(uint64_t)) {
*static_cast<uint64_t*>(valuePtr) = value;
status = ONNXIFI_STATUS_SUCCESS;
}
*valueSizePtr = sizeof(uint64_t);
return status;
}
static onnxStatus setStringInfo(
void* valuePtr,
size_t *valueSizePtr,
const char* value,
size_t valueSize)
{
onnxStatus status = ONNXIFI_STATUS_FALLBACK;
if (valuePtr != nullptr && *valueSizePtr >= valueSize) {
memcpy(valuePtr, value, valueSize);
status = ONNXIFI_STATUS_SUCCESS;
}
*valueSizePtr = valueSize;
return status;
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI
onnxGetBackendInfo(onnxBackendID backendID, onnxBackendInfo infoType,
void *infoValue, size_t *infoValueSize) {
return OnnxifiTryCatch([&] {
if (infoValueSize == nullptr) {
return ONNXIFI_STATUS_INVALID_POINTER;
}
if (backendID == nullptr) {
return ONNXIFI_STATUS_INVALID_ID;
}
const int cudaDeviceId =
static_cast<OnnxTensorRTBackendID*>(backendID)->device_id;
switch (infoType) {
case ONNXIFI_BACKEND_ONNXIFI_VERSION:
return setUIntInfo(infoValue, infoValueSize,
UINT64_C(0x0000000100000000));
case ONNXIFI_BACKEND_NAME:
return setStringInfo(infoValue, infoValueSize,
BACKEND_NAME, strlen(BACKEND_NAME));
case ONNXIFI_BACKEND_VENDOR:
return setStringInfo(infoValue, infoValueSize,
BACKEND_VENDOR, strlen(BACKEND_VENDOR));
case ONNXIFI_BACKEND_VERSION:
return setStringInfo(infoValue, infoValueSize,
BACKEND_VERSION, strlen(BACKEND_VERSION));
case ONNXIFI_BACKEND_EXTENSIONS:
return setStringInfo(infoValue, infoValueSize,
BACKEND_EXTENSIONS, strlen(BACKEND_EXTENSIONS));
case ONNXIFI_BACKEND_DEVICE:
{
cudaDeviceProp deviceProperties = { 0 };
cudaError_t cudaError =
cudaGetDeviceProperties(&deviceProperties, cudaDeviceId);
switch (cudaError) {
case cudaSuccess:
break;
case cudaErrorInvalidDevice:
return ONNXIFI_STATUS_INVALID_ID;
default:
return ONNXIFI_STATUS_INTERNAL_ERROR;
}
return setStringInfo(infoValue, infoValueSize,
deviceProperties.name,
strnlen(deviceProperties.name, sizeof(deviceProperties.name)));
}
case ONNXIFI_BACKEND_DEVICE_TYPE:
return setUIntInfo(infoValue, infoValueSize,
ONNXIFI_DEVICE_TYPE_GPU);
case ONNXIFI_BACKEND_ONNX_IR_VERSION:
return setStringInfo(infoValue, infoValueSize,
BACKEND_IR_VERSION, strlen(BACKEND_IR_VERSION));
case ONNXIFI_BACKEND_OPSET_VERSION:
return setStringInfo(infoValue, infoValueSize,
BACKEND_OPSET_VERSION, strlen(BACKEND_OPSET_VERSION));
case ONNXIFI_BACKEND_CAPABILITIES:
return setUIntInfo(infoValue, infoValueSize, 0);
case ONNXIFI_BACKEND_INIT_PROPERTIES:
return setUIntInfo(infoValue, infoValueSize, 0);
case ONNXIFI_BACKEND_MEMORY_TYPES:
return setUIntInfo(infoValue, infoValueSize,
ONNXIFI_MEMORY_TYPE_CPU | ONNXIFI_MEMORY_TYPE_CUDA_BUFFER);
case ONNXIFI_BACKEND_GRAPH_INIT_PROPERTIES:
return setUIntInfo(infoValue, infoValueSize, 0);
case ONNXIFI_BACKEND_SYNCHRONIZATION_TYPES:
return setUIntInfo(infoValue, infoValueSize,
ONNXIFI_SYNCHRONIZATION_EVENT);
case ONNXIFI_BACKEND_CPU_MEMORY_READ_BANDWIDTH:
case ONNXIFI_BACKEND_CPU_MEMORY_WRITE_BANDWIDTH:
/* Assume PCI Express 3.0 x16 */
return setUIntInfo(infoValue, infoValueSize, UINT64_C(16519104985));
case ONNXIFI_BACKEND_MAX_GRAPH_COUNT:
return setUIntInfo(infoValue, infoValueSize, UINT64_MAX);
case ONNXIFI_BACKEND_MEMORY_SIZE:
case ONNXIFI_BACKEND_MAX_GRAPH_SIZE:
case ONNXIFI_BACKEND_PCI_BUS_ID:
case ONNXIFI_BACKEND_PCI_DEVICE_ID:
case ONNXIFI_BACKEND_PCI_DOMAIN_ID:
case ONNXIFI_BACKEND_MACS_FP32:
case ONNXIFI_BACKEND_MACS_FP16:
case ONNXIFI_BACKEND_MEMORY_BANDWIDTH:
{
cudaDeviceProp deviceProperties = { 0 };
cudaError_t cudaError =
cudaGetDeviceProperties(&deviceProperties, cudaDeviceId);
switch (cudaError) {
case cudaSuccess:
break;
case cudaErrorInvalidDevice:
return ONNXIFI_STATUS_INVALID_ID;
default:
return ONNXIFI_STATUS_INTERNAL_ERROR;
}
switch (infoType) {
case ONNXIFI_BACKEND_MEMORY_SIZE:
case ONNXIFI_BACKEND_MAX_GRAPH_SIZE:
return setUIntInfo(infoValue, infoValueSize,
static_cast<uint64_t>(deviceProperties.totalGlobalMem));
case ONNXIFI_BACKEND_MEMORY_BANDWIDTH:
return setUIntInfo(infoValue, infoValueSize,
static_cast<uint64_t>(deviceProperties.memoryClockRate) *
static_cast<uint64_t>(deviceProperties.memoryBusWidth) *
/*
* clock rate: kHZ -> HZ (multiply by 1000)
* bus width: bits -> bytes (divide by 8)
* 2x DDR factor (multiply by 2)
*/
UINT64_C(250));
case ONNXIFI_BACKEND_PCI_BUS_ID:
return setUIntInfo(infoValue, infoValueSize,
static_cast<uint64_t>(deviceProperties.pciBusID));
case ONNXIFI_BACKEND_PCI_DEVICE_ID:
return setUIntInfo(infoValue, infoValueSize,
static_cast<uint64_t>(deviceProperties.pciDeviceID));
case ONNXIFI_BACKEND_PCI_DOMAIN_ID:
return setUIntInfo(infoValue, infoValueSize,
static_cast<uint64_t>(deviceProperties.pciDomainID));
case ONNXIFI_BACKEND_MACS_FP32:
{
/*
* See "32-bit floating-point add, multiply, multiply-add" in
* "Throughput of Native Arithmetic Instructions" table in
* CUDA Programming Guide. Multiply by 2 because we could FMA
* as two FLOPs.
*/
uint64_t flopsPerCycle = 0;
switch (deviceProperties.major) {
case 3:
/* Kepler */
flopsPerCycle = 192 * 2;
break;
case 5:
/* Maxwell */
flopsPerCycle = 128 * 2;
break;
case 6:
/* Pascal */
switch (deviceProperties.minor) {
case 0:
flopsPerCycle = 64 * 2;
break;
case 1:
flopsPerCycle = 128 * 2;
break;
case 2:
flopsPerCycle = 128 * 2;
break;
}
break;
case 7:
/* Volta */
if (deviceProperties.minor == 0) {
flopsPerCycle = 64 * 2;
}
break;
}
if (flopsPerCycle == 0) {
return ONNXIFI_STATUS_UNSUPPORTED_ATTRIBUTE;
}
return setUIntInfo(infoValue, infoValueSize,
UINT64_C(1000) /* KHz -> Hz */ *
static_cast<uint64_t>(deviceProperties.clockRate) *
static_cast<uint64_t>(deviceProperties.multiProcessorCount) *
flopsPerCycle);
}
case ONNXIFI_BACKEND_MACS_FP16:
{
/*
* See "16-bit floating-point add, multiply, multiply-add" and
* "32-bit floating-point add, multiply, multiply-add" in
* "Throughput of Native Arithmetic Instructions" table in
* CUDA Programming Guide. Use the maximum among 16-bit and 32-bit
* throughput. Multiply by 2 because we could FMA as two FLOPs.
*/
uint64_t flopsPerCycle = 0;
switch (deviceProperties.major) {
case 3:
/* Kepler */
flopsPerCycle = 192 * 2;
break;
case 5:
/* Maxwell */
if (deviceProperties.minor == 3) {
/* Maxwell-based Tegra supports FP16 at 2x rate */
flopsPerCycle = 256 * 2;
} else {
flopsPerCycle = 128 * 2;
}
break;
case 6:
/* Pascal */
switch (deviceProperties.minor) {
case 0:
/* Use FP16 */
flopsPerCycle = 128 * 2;
break;
case 1:
/* Use FP32 */
flopsPerCycle = 128 * 2;
break;
case 2:
/* Use FP16 */
flopsPerCycle = 256 * 2;
break;
}
break;
case 7:
/* Volta */
if (deviceProperties.minor == 0) {
/*
* Tensor Core:
* - 8 Tensor Cores per multiprocessor
* - 64 FMA/cycle on each Tensor Core
* - 2 FLOPs / FMA
*/
flopsPerCycle = 8 * 64 * 2;
}
break;
}
if (flopsPerCycle == 0) {
return ONNXIFI_STATUS_UNSUPPORTED_ATTRIBUTE;
}
return setUIntInfo(infoValue, infoValueSize,
UINT64_C(1000) /* KHz -> Hz */ *
static_cast<uint64_t>(deviceProperties.clockRate) *
static_cast<uint64_t>(deviceProperties.multiProcessorCount) *
flopsPerCycle);
}
default:
return ONNXIFI_STATUS_UNSUPPORTED_ATTRIBUTE;
}
}
case ONNXIFI_BACKEND_CUDA_INDEX:
return setUIntInfo(infoValue, infoValueSize,
static_cast<uint64_t>(cudaDeviceId));
default:
return ONNXIFI_STATUS_UNSUPPORTED_ATTRIBUTE;
}
});
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI
onnxGetBackendCompatibility(onnxBackendID backendID, size_t onnxModelSize,
const void *onnxModel) {
return OnnxifiTryCatch([&] {
if (!onnxModel) {
return ONNXIFI_STATUS_INVALID_POINTER;
}
if (onnxModelSize == 0) {
return ONNXIFI_STATUS_INVALID_SIZE;
}
TRT_Logger trt_logger;
std::shared_ptr<nvinfer1::IBuilder> trt_builder = infer_object(nvinfer1::createInferBuilder(trt_logger));
std::shared_ptr<nvinfer1::INetworkDefinition> trt_network = infer_object(trt_builder->createNetwork());
auto parser = infer_object(nvonnxparser::createParser(*trt_network, trt_logger));
SubGraphCollection_t subgraphcollection;
if (parser->supportsModel(onnxModel, onnxModelSize, subgraphcollection)) {
return ONNXIFI_STATUS_SUCCESS;
} else {
return ONNXIFI_STATUS_UNSUPPORTED_OPERATOR;
}
});
}
// NB: Passing arguments to backend is tricky. And we need more documentation
// for it I didn't put any arguments here for now.
// TODO: submit arguments for
// - setMaxBatchSize (size_t)
// - setMaxWorkspaceSize (size_t)
// - setHalf2Mode (bool)
// - setInt8Mode (bool)
// - setDebugSync (bool)
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI
onnxInitBackend(onnxBackendID backendID, const uint64_t *auxPropertiesList,
onnxBackend *backend) {
auto ret = OnnxifiTryCatch([&] {
auto *backend_id = reinterpret_cast<OnnxTensorRTBackendID *>(backendID);
if (!backend_id) {
return ONNXIFI_STATUS_INVALID_ID;
}
*backend = (onnxBackend)(new OnnxTensorRTBackendRep(*backend_id));
return ONNXIFI_STATUS_SUCCESS;
});
if (ret != ONNXIFI_STATUS_SUCCESS) {
*backend = NULL;
}
return ret;
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI
onnxReleaseBackend(onnxBackend backend) {
return OnnxifiTryCatch([&] {
auto *backendrep = reinterpret_cast<OnnxTensorRTBackendRep *>(backend);
if (!backendrep) {
return ONNXIFI_STATUS_INVALID_BACKEND;
}
delete backendrep;
return ONNXIFI_STATUS_SUCCESS;
});
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI
onnxInitEvent(onnxBackend backend, onnxEvent *event) {
auto ret = OnnxifiTryCatch([&] {
if (!event) {
return ONNXIFI_STATUS_INVALID_POINTER;
}
auto *backendrep = reinterpret_cast<OnnxTensorRTBackendRep *>(backend);
if (!backendrep) {
return ONNXIFI_STATUS_INVALID_BACKEND;
}
*event = reinterpret_cast<onnxEvent>(
new OnnxTensorRTEvent(backendrep->stream()));
return ONNXIFI_STATUS_SUCCESS;
});
if (ret != ONNXIFI_STATUS_SUCCESS) {
*event = NULL;
}
return ret;
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI
onnxSignalEvent(onnxEvent event) {
return OnnxifiTryCatch([&] {
auto trt_event = reinterpret_cast<OnnxTensorRTEvent *>(event);
if (!trt_event) {
return ONNXIFI_STATUS_INVALID_EVENT;
}
return trt_event->Signal();
});
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI
onnxWaitEvent(onnxEvent event) {
return OnnxifiTryCatch([&] {
auto trt_event = reinterpret_cast<OnnxTensorRTEvent *>(event);
if (!trt_event) {
return ONNXIFI_STATUS_INVALID_EVENT;
}
return trt_event->Wait();
});
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI
onnxGetEventState(onnxEvent event, onnxEventState *state) {
return OnnxifiTryCatch([&] {
if (!state) {
return ONNXIFI_STATUS_INVALID_POINTER;
}
*state = ONNXIFI_EVENT_STATE_INVALID;
auto trt_event = reinterpret_cast<OnnxTensorRTEvent *>(event);
if (!trt_event) {
return ONNXIFI_STATUS_INVALID_EVENT;
}
return trt_event->CheckState(state);
});
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI
onnxReleaseEvent(onnxEvent event) {
return OnnxifiTryCatch([&] {
auto *trt_event = reinterpret_cast<OnnxTensorRTEvent *>(event);
if (!trt_event) {
return ONNXIFI_STATUS_INVALID_EVENT;
}
delete trt_event;
return ONNXIFI_STATUS_SUCCESS;
});
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI onnxInitGraph(
onnxBackend backend, const uint64_t *auxPropertiesList,
size_t onnxModelSize, const void *onnxModel, uint32_t weightsCount,
const onnxTensorDescriptorV1 *weightDescriptors, onnxGraph *graph) {
auto ret = OnnxifiTryCatch([&] {
auto *backendrep = reinterpret_cast<OnnxTensorRTBackendRep *>(backend);
if (!backendrep) {
return ONNXIFI_STATUS_INVALID_BACKEND;
}
if (!onnxModel) {
return ONNXIFI_STATUS_INVALID_POINTER;
}
if (onnxModelSize == 0) {
return ONNXIFI_STATUS_INVALID_SIZE;
}
for (auto i = 0U; i < weightsCount; ++i) {
if (weightDescriptors[i].tag != ONNXIFI_TAG_TENSOR_DESCRIPTOR_V1) {
return ONNXIFI_STATUS_UNSUPPORTED_TAG;
}
}
// Parse the model
auto ret = backendrep->ImportModel(onnxModel, onnxModelSize, weightsCount,
weightDescriptors);
if (ret != ONNXIFI_STATUS_SUCCESS) {
return ret;
}
// Create the TRT engine
*graph = (onnxGraph)(new GraphRep(backendrep));
return ONNXIFI_STATUS_SUCCESS;
});
if (ret != ONNXIFI_STATUS_SUCCESS) {
*graph = NULL;
}
return ret;
}
// NB: in the context of TRT, this step will setup the input/output bindings for
// ICudaEngine
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI onnxSetGraphIO(
onnxGraph graph, uint32_t inputsCount,
const onnxTensorDescriptorV1 *inputDescriptors, uint32_t outputsCount,
const onnxTensorDescriptorV1 *outputDescriptors) {
return OnnxifiTryCatch([&] {
auto *graph_rep = reinterpret_cast<GraphRep *>(graph);
if (!graph_rep) {
return ONNXIFI_STATUS_INVALID_GRAPH;
}
if (!inputDescriptors || !outputDescriptors) {
return ONNXIFI_STATUS_INVALID_POINTER;
}
return graph_rep->InitIO(inputsCount, inputDescriptors, outputsCount,
outputDescriptors);
});
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI
onnxRunGraph(onnxGraph graph, const onnxMemoryFenceV1 *inputFence,
onnxMemoryFenceV1 *outputFence) {
return OnnxifiTryCatch([&] {
if (!inputFence || !outputFence) {
return ONNXIFI_STATUS_INVALID_POINTER;
}
if (inputFence->tag != ONNXIFI_TAG_MEMORY_FENCE_V1 ||
outputFence->tag != ONNXIFI_TAG_MEMORY_FENCE_V1) {
return ONNXIFI_STATUS_UNSUPPORTED_TAG;
}
auto *trt_event = reinterpret_cast<OnnxTensorRTEvent *>(inputFence->event);
auto ret = trt_event->Wait();
if (ret != ONNXIFI_STATUS_SUCCESS) {
return ret;
}
auto *graph_rep = reinterpret_cast<GraphRep *>(graph);
if (!graph_rep) {
return ONNXIFI_STATUS_INVALID_GRAPH;
}
ret = graph_rep->Run();
auto output_event = new OnnxTensorRTEvent(graph_rep->stream());
outputFence->event = reinterpret_cast<onnxEvent>(output_event);
outputFence->type = ONNXIFI_SYNCHRONIZATION_EVENT;
output_event->Signal();
return ret;
});
}
ONNXIFI_PUBLIC ONNXIFI_CHECK_RESULT onnxStatus ONNXIFI_ABI
onnxReleaseGraph(onnxGraph graph) {
return OnnxifiTryCatch([&] {
auto *graph_rep = reinterpret_cast<GraphRep *>(graph);
if (!graph_rep) {
return ONNXIFI_STATUS_INVALID_GRAPH;
}
delete graph_rep;
return ONNXIFI_STATUS_SUCCESS;
});
}
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/liangjienan/onnx-tensorrt.git
[email protected]:liangjienan/onnx-tensorrt.git
liangjienan
onnx-tensorrt
onnx-tensorrt
master

搜索帮助