代码拉取完成,页面将自动刷新
/*
* Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "NvOnnxParser.h"
#include "onnx_utils.hpp"
#include "common.hpp"
#include <google/protobuf/io/coded_stream.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <google/protobuf/text_format.h>
#include <fstream>
#include <unistd.h> // For ::getopt
#include <iostream>
using std::cout;
using std::cerr;
using std::endl;
#include <ctime>
#include <fcntl.h> // For ::open
#include <limits>
void print_usage() {
cout << "ONNX to TensorRT model parser" << endl;
cout << "Usage: onnx2trt onnx_model.pb" << "\n"
<< " [-o engine_file.trt] (output TensorRT engine)" << "\n"
<< " [-t onnx_model.pbtxt] (output ONNX text file without weights)" << "\n"
<< " [-T onnx_model.pbtxt] (output ONNX text file with weights)" << "\n"
<< " [-b max_batch_size (default 32)]" << "\n"
<< " [-w max_workspace_size_bytes (default 1 GiB)]" << "\n"
<< " [-d model_data_type_bit_depth] (32 => float32, 16 => float16)" << "\n"
<< " [-l] (list layers and their shapes)" << "\n"
<< " [-g] (debug mode)" << "\n"
<< " [-v] (increase verbosity)" << "\n"
<< " [-q] (decrease verbosity)" << "\n"
<< " [-V] (show version information)" << "\n"
<< " [-h] (show help)" << endl;
}
int main(int argc, char* argv[]) {
GOOGLE_PROTOBUF_VERIFY_VERSION;
std::string engine_filename;
std::string text_filename;
std::string full_text_filename;
size_t max_batch_size = 32;
size_t max_workspace_size = 1 << 30;
int model_dtype_nbits = 32;
int verbosity = (int)nvinfer1::ILogger::Severity::kWARNING;
bool print_layer_info = false;
bool debug_builder = false;
int arg = 0;
while( (arg = ::getopt(argc, argv, "o:b:w:t:T:d:lgvqVh")) != -1 ) {
switch (arg){
case 'o':
if( optarg ) { engine_filename = optarg; break; }
else { cerr << "ERROR: -o flag requires argument" << endl; return -1; }
case 't':
if( optarg ) { text_filename = optarg; break; }
else { cerr << "ERROR: -t flag requires argument" << endl; return -1; }
case 'T':
if( optarg ) { full_text_filename = optarg; break; }
else { cerr << "ERROR: -T flag requires argument" << endl; return -1; }
case 'b':
if( optarg ) { max_batch_size = atoll(optarg); break; }
else { cerr << "ERROR: -b flag requires argument" << endl; return -1; }
case 'w':
if( optarg ) { max_workspace_size = atoll(optarg); break; }
else { cerr << "ERROR: -w flag requires argument" << endl; return -1; }
case 'd':
if( optarg ) { model_dtype_nbits = atoi(optarg); break; }
else { cerr << "ERROR: -d flag requires argument" << endl; return -1; }
case 'l': print_layer_info = true; break;
case 'g': debug_builder = true; break;
case 'v': ++verbosity; break;
case 'q': --verbosity; break;
case 'V': common::print_version(); return 0;
case 'h': print_usage(); return 0;
}
}
int num_args = argc - optind;
if( num_args != 1 ) {
print_usage();
return -1;
}
std::string onnx_filename = argv[optind];
nvinfer1::DataType model_dtype;
if( model_dtype_nbits == 32 ) { model_dtype = nvinfer1::DataType::kFLOAT; }
else if( model_dtype_nbits == 16 ) { model_dtype = nvinfer1::DataType::kHALF; }
//else if( model_dtype_nbits == 8 ) { model_dtype = nvinfer1::DataType::kINT8; }
else {
cerr << "ERROR: Invalid model data type bit depth: " << model_dtype_nbits << endl;
return -2;
}
if (!std::ifstream(onnx_filename.c_str())) {
cerr << "Input file not found: " << onnx_filename << endl;
return -3;
}
::ONNX_NAMESPACE::ModelProto onnx_model;
bool is_binary = common::ParseFromFile_WAR(&onnx_model, onnx_filename.c_str());
if( !is_binary && !common::ParseFromTextFile(&onnx_model, onnx_filename.c_str()) ) {
cerr << "Failed to parse ONNX model" << endl;
return -3;
}
if( verbosity >= (int)nvinfer1::ILogger::Severity::kWARNING ) {
int64_t opset_version = (onnx_model.opset_import().size() ?
onnx_model.opset_import(0).version() : 0);
cout << "----------------------------------------------------------------" << endl;
cout << "Input filename: " << onnx_filename << endl;
cout << "ONNX IR version: " << common::onnx_ir_version_string(onnx_model.ir_version()) << endl;
cout << "Opset version: " << opset_version << endl;
cout << "Producer name: " << onnx_model.producer_name() << endl;
cout << "Producer version: " << onnx_model.producer_version() << endl;
cout << "Domain: " << onnx_model.domain() << endl;
cout << "Model version: " << onnx_model.model_version() << endl;
cout << "Doc string: " << onnx_model.doc_string() << endl;
cout << "----------------------------------------------------------------" << endl;
}
if( onnx_model.ir_version() > ::ONNX_NAMESPACE::IR_VERSION ) {
cerr << "WARNING: ONNX model has a newer ir_version ("
<< common::onnx_ir_version_string(onnx_model.ir_version())
<< ") than this parser was built against ("
<< common::onnx_ir_version_string(::ONNX_NAMESPACE::IR_VERSION) << ")." << endl;
}
if( !text_filename.empty() ) {
if( verbosity >= (int)nvinfer1::ILogger::Severity::kWARNING ) {
cout << "Writing ONNX model (without weights) as text to " << text_filename << endl;
}
std::ofstream onnx_text_file(text_filename.c_str());
std::string onnx_text = pretty_print_onnx_to_string(onnx_model);
onnx_text_file.write(onnx_text.c_str(), onnx_text.size());
}
if( !full_text_filename.empty() ) {
if( verbosity >= (int)nvinfer1::ILogger::Severity::kWARNING ) {
cout << "Writing ONNX model (with weights) as text to " << full_text_filename << endl;
}
std::string full_onnx_text;
google::protobuf::TextFormat::PrintToString(onnx_model, &full_onnx_text);
std::ofstream full_onnx_text_file(full_text_filename.c_str());
full_onnx_text_file.write(full_onnx_text.c_str(), full_onnx_text.size());
}
const auto explicitBatch = 1U << static_cast<uint32_t>(nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH);
common::TRT_Logger trt_logger((nvinfer1::ILogger::Severity)verbosity);
auto trt_builder = common::infer_object(nvinfer1::createInferBuilder(trt_logger));
auto trt_network = common::infer_object(trt_builder->createNetworkV2(explicitBatch));
auto trt_parser = common::infer_object(nvonnxparser::createParser(
*trt_network, trt_logger));
// TODO: Fix this for the new API
//if( print_layer_info ) {
// parser->setLayerInfoStream(&std::cout);
//}
(void)print_layer_info;
if( verbosity >= (int)nvinfer1::ILogger::Severity::kWARNING ) {
cout << "Parsing model" << endl;
}
{
std::ifstream onnx_file(onnx_filename.c_str(),
std::ios::binary | std::ios::ate);
std::streamsize file_size = onnx_file.tellg();
onnx_file.seekg(0, std::ios::beg);
std::vector<char> onnx_buf(file_size);
if( !onnx_file.read(onnx_buf.data(), onnx_buf.size()) ) {
cerr << "ERROR: Failed to read from file " << onnx_filename << endl;
return -4;
}
if( !trt_parser->parse(onnx_buf.data(), onnx_buf.size()) ) {
int nerror = trt_parser->getNbErrors();
for( int i=0; i<nerror; ++i ) {
nvonnxparser::IParserError const* error = trt_parser->getError(i);
if( error->node() != -1 ) {
::ONNX_NAMESPACE::NodeProto const& node =
onnx_model.graph().node(error->node());
cerr << "While parsing node number " << error->node()
<< " [" << node.op_type();
if( node.output().size() ) {
cerr << " -> \"" << node.output(0) << "\"";
}
cerr << "]:" << endl;
if( verbosity >= (int)nvinfer1::ILogger::Severity::kINFO ) {
cerr << "--- Begin node ---" << endl;
cerr << node << endl;
cerr << "--- End node ---" << endl;
}
}
cerr << "ERROR: "
<< error->file() << ":" << error->line()
<< " In function " << error->func() << ":\n"
<< "[" << static_cast<int>(error->code()) << "] " << error->desc()
<< endl;
}
return -5;
}
}
bool fp16 = trt_builder->platformHasFastFp16();
if( !engine_filename.empty() ) {
if( verbosity >= (int)nvinfer1::ILogger::Severity::kWARNING ) {
cout << "Building TensorRT engine, FP16 available:"<< fp16 << endl;
cout << " Max batch size: " << max_batch_size << endl;
cout << " Max workspace size: " << max_workspace_size / (1024. * 1024) << " MiB" << endl;
}
trt_builder->setMaxBatchSize(max_batch_size);
trt_builder->setMaxWorkspaceSize(max_workspace_size);
if( fp16 && model_dtype == nvinfer1::DataType::kHALF) {
trt_builder->setHalf2Mode(true);
} else if( model_dtype == nvinfer1::DataType::kINT8 ) {
// TODO: Int8 support
//trt_builder->setInt8Mode(true);
cerr << "ERROR: Int8 mode not yet supported" << endl;
return -5;
}
trt_builder->setDebugSync(debug_builder);
auto trt_engine = common::infer_object(trt_builder->buildCudaEngine(*trt_network.get()));
auto engine_plan = common::infer_object(trt_engine->serialize());
std::ofstream engine_file(engine_filename.c_str());
if (!engine_file) {
cerr << "Failed to open output file for writing: "
<< engine_filename << endl;
return -6;
}
if( verbosity >= (int)nvinfer1::ILogger::Severity::kWARNING ) {
cout << "Writing TensorRT engine to " << engine_filename << endl;
}
engine_file.write((char*)engine_plan->data(), engine_plan->size());
engine_file.close();
}
if( verbosity >= (int)nvinfer1::ILogger::Severity::kWARNING ) {
cout << "All done" << endl;
}
return 0;
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。