代码拉取完成,页面将自动刷新
/*
* Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#ifndef NV_ONNX_PARSER_H
#define NV_ONNX_PARSER_H
#include "NvInfer.h"
#include "NvInferPlugin.h"
#include "NvOnnxParserTypedefs.h"
#define NV_ONNX_PARSER_MAJOR 6
#define NV_ONNX_PARSER_MINOR 0
#define NV_ONNX_PARSER_PATCH 1
static const int NV_ONNX_PARSER_VERSION = ((NV_ONNX_PARSER_MAJOR * 10000) + (NV_ONNX_PARSER_MINOR * 100) + NV_ONNX_PARSER_PATCH);
class onnxTensorDescriptorV1;
//!
//! \namespace nvonnxparser
//!
//! \brief The TensorRT ONNX parser API namespace
//!
namespace nvonnxparser
{
template <typename T>
inline int EnumMax();
/** \enum ErrorCode
*
* \brief the type of parser error
*/
enum class ErrorCode : int
{
kSUCCESS = 0,
kINTERNAL_ERROR = 1,
kMEM_ALLOC_FAILED = 2,
kMODEL_DESERIALIZE_FAILED = 3,
kINVALID_VALUE = 4,
kINVALID_GRAPH = 5,
kINVALID_NODE = 6,
kUNSUPPORTED_GRAPH = 7,
kUNSUPPORTED_NODE = 8
};
template <>
inline int EnumMax<ErrorCode>()
{
return 9;
}
/** \class IParserError
*
* \brief an object containing information about an error
*/
class IParserError
{
public:
/** \brief the error code
*/
virtual ErrorCode code() const = 0;
/** \brief description of the error
*/
virtual const char* desc() const = 0;
/** \brief source file in which the error occurred
*/
virtual const char* file() const = 0;
/** \brief source line at which the error occurred
*/
virtual int line() const = 0;
/** \brief source function in which the error occurred
*/
virtual const char* func() const = 0;
/** \brief index of the ONNX model node in which the error occurred
*/
virtual int node() const = 0;
protected:
virtual ~IParserError() {}
};
/** \class IParser
*
* \brief an object for parsing ONNX models into a TensorRT network definition
*/
class IParser
{
public:
/** \brief Parse a serialized ONNX model into the TensorRT network.
* This method has very limited diagnostic. If parsing the serialized model
* fails for any reason (e.g. unsupported IR version, unsupported opset, etc.)
* it the user responsibility to intercept and report the error.
* To obtain a better diagnostic, use the parseFromFile method below.
*
* \param serialized_onnx_model Pointer to the serialized ONNX model
* \param serialized_onnx_model_size Size of the serialized ONNX model
* in bytes
* \return true if the model was parsed successfully
* \see getNbErrors() getError()
*/
virtual bool parse(void const* serialized_onnx_model,
size_t serialized_onnx_model_size)
= 0;
/** \brief Parse an onnx model file, can be a binary protobuf or a text onnx model
* calls parse method inside.
*
* \param File name
* \param Verbosity Level
*
* \return true if the model was parsed successfully
*
*/
virtual bool parseFromFile(const char* onnxModelFile, int verbosity) = 0;
/** \brief Check whether TensorRT supports a particular ONNX model
*
* \param serialized_onnx_model Pointer to the serialized ONNX model
* \param serialized_onnx_model_size Size of the serialized ONNX model
* in bytes
* \return true if the model is supported
*/
virtual bool supportsModel(void const* serialized_onnx_model,
size_t serialized_onnx_model_size,
SubGraphCollection_t &sub_graph_collection)
= 0;
/** \brief Parse a serialized ONNX model into the TensorRT network
* with consideration of user provided weights
*
* \param serialized_onnx_model Pointer to the serialized ONNX model
* \param serialized_onnx_model_size Size of the serialized ONNX model
* in bytes
* \param weight_count number of user provided weights
* \param weight_descriptors pointer to user provided weight array
* \return true if the model was parsed successfully
* \see getNbErrors() getError()
*/
virtual bool parseWithWeightDescriptors(
void const* serialized_onnx_model, size_t serialized_onnx_model_size,
uint32_t weight_count,
onnxTensorDescriptorV1 const* weight_descriptors)
= 0;
/** \brief Returns whether the specified operator may be supported by the
* parser.
*
* Note that a result of true does not guarantee that the operator will be
* supported in all cases (i.e., this function may return false-positives).
*
* \param op_name The name of the ONNX operator to check for support
*/
virtual bool supportsOperator(const char* op_name) const = 0;
/** \brief destroy this object
*/
virtual void destroy() = 0;
/** \brief Get the number of errors that occurred during prior calls to
* \p parse
*
* \see getError() clearErrors() IParserError
*/
virtual int getNbErrors() const = 0;
/** \brief Get an error that occurred during prior calls to \p parse
*
* \see getNbErrors() clearErrors() IParserError
*/
virtual IParserError const* getError(int index) const = 0;
/** \brief Clear errors from prior calls to \p parse
*
* \see getNbErrors() getError() IParserError
*/
virtual void clearErrors() = 0;
protected:
virtual ~IParser() {}
};
} // namespace nvonnxparser
extern "C" TENSORRTAPI void* createNvOnnxParser_INTERNAL(void* network, void* logger, int version);
extern "C" TENSORRTAPI int getNvOnnxParserVersion();
namespace nvonnxparser
{
#ifdef SWIG
inline IParser* createParser(nvinfer1::INetworkDefinition* network,
nvinfer1::ILogger* logger)
{
return static_cast<IParser*>(
createNvOnnxParser_INTERNAL(network, logger, NV_ONNX_PARSER_VERSION));
}
#endif // SWIG
namespace
{
/** \brief Create a new parser object
*
* \param network The network definition that the parser will write to
* \param logger The logger to use
* \return a new parser object or NULL if an error occurred
* \see IParser
*/
#ifdef _MSC_VER
TENSORRTAPI IParser* createParser(nvinfer1::INetworkDefinition& network,
nvinfer1::ILogger& logger)
#else
inline IParser* createParser(nvinfer1::INetworkDefinition& network,
nvinfer1::ILogger& logger)
#endif
{
return static_cast<IParser*>(
createNvOnnxParser_INTERNAL(&network, &logger, NV_ONNX_PARSER_VERSION));
}
} // namespace
} // namespace nvonnxparser
#endif // NV_ONNX_PARSER_H
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。