1 Star 9 Fork 5

梁荣敏/spiralsTrajactory

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
main.cpp 4.10 KB
一键复制 编辑 原始数据 按行查看 历史
#include <iostream>
#include "cppoptlib/meta.h"
#include "cppoptlib/problem.h"
#include "cppoptlib/solver/bfgssolver.h"
#include <cppoptlib/solver/neldermeadsolver.h>
#include "Eigen/Dense"
#include "time.h"
#include "polytraj.h"
#include "fstream"
#include "lib/src/shoot.h"
#include "plot2d.hpp"
#include <QApplication>
using namespace cppoptlib;
using namespace Eigen;
/*
* liang rongmin 2021.8.24
* module variable interval between [-π,π)
*/
double mod(double x){
if( x>= -M_PI && x<M_PI)
return x;
else if( x < -M_PI ){
return x+( int(x/(2*M_PI)) + 1.0 )*2*M_PI;
}
else if( x>= M_PI)
return x-( int(x/(2*M_PI)) + 1.0 )*2*M_PI;
}
int main(int argc, char* argv[]){
QApplication app(argc, argv);
using namespace polytraj::path;
State xs,xe;
xs << 0,0,15.0/16.0*2*M_PI,0; //(x,y,theta,curvature);
xe << -7,2,0,0;
if( abs(xe(ST) - xs(ST))>M_PI){
xs(ST) = mod(xs(ST));
xe(ST) = mod(xe(ST));
}
clock_t start,end;
start = clock();
// Path path = generate(xs, xe, 100); //只有边界条件
Path path = generateMinE(xs,xe,100); //最小能量指标+边界约束
end = clock();
std::cout << "time cost is:" << double(end-start)/CLOCKS_PER_SEC << "\n";
Eigen::IOFormat CleanFmt(4, 0, ", ", "\n", "[", "]");
std::cout << "Start Posture: " << xs.transpose().format(CleanFmt)
<< std::endl;
std::cout << "End Posture: " << xe.transpose().format(CleanFmt)
<< std::endl;
std::cout << std::endl;
// Pretty print the path. Each row is a state.
// The first row is xs. The final row is (nearly) xe.
std::cout << "Generated Path: [x, y, theta, curvature]" << std::endl;
std::cout << path.transpose().format(CleanFmt) << std::endl;
ArrayXXf px = path.transpose().cast<float>().array();
ArrayXXf py = path.transpose().cast<float>().array();
auto plx = px.col(0);
auto ply = py.col(1);
plx.minCoeff();
Plot2D plt;
plt.grid(true);
plt.plot(plx,ply,marker="-",linewidth=1);
plt.axis(plx.minCoeff()-2,plx.maxCoeff()+2,ply.minCoeff()-2,ply.maxCoeff()+2);
plt.show();
// std::ofstream fout("matrix.txt");
// fout << path.transpose() ;
// fout.close();
// FILE *pipe = _popen("gnuplot","w");
// if(pipe == NULL)
// {
// exit(-1);
// }
// //use gnuplot to show the path
// fprintf(pipe,"set title 'trajectory'\n");
// fprintf(pipe,"set xlabel 'x'\n");
// fprintf(pipe,"set ylabel 'y'\n");
//// fprintf(pipe,"set xrange[-2:12]\n");
//// fprintf(pipe,"set yrange[-2:12]\n");
//// fprintf(pipe,"set size 2 2\n");
// fprintf(pipe,"set grid\n");
// fprintf(pipe,"plot 'matrix.txt' title 'path' with lines\n");
// fprintf(pipe,"pause mouse\n");
// _pclose(pipe);
}
//class Rosenbrock : public Problem<double> { //测试迭代器的使用方法
//public:
// double value(const TVector &x) {
// const double t1 = (1 - x[0]);
// const double t2 = (x[1] - x[0] * x[0]);
// return t1 * t1 + 100 * t2 * t2;
// }
//// void gradient(const TVector &x, TVector &grad) {
//// grad[0] = -2 * (1 - x[0]) + 200 * (x[1] - x[0] * x[0]) * (-2 * x[0]);
//// grad[1] = 200 * (x[1] - x[0] * x[0]);
//// }
//};
//
//Eigen::VectorXd intCos(double s, Eigen::VectorXd &xs){
// Eigen::VectorXd xdot = xs;
// xdot << cos(s), sin(s);
// return xdot;
//}
//
////int main(){
//// Eigen::Matrix<double, 2, 1> xd;
//// xd.setZero();
//// Eigen::MatrixXd path = polytraj::shootSimpson(intCos,xd, M_PI,100);
////
////}
//int main(int argc, char const *argv[]) {
// clock_t start,finish;
// start = clock();
// Rosenbrock f;
// Problem<double>::TVector x(2); x << 0, 0;
// NelderMeadSolver<Rosenbrock> solver; //花费0.004秒
//// BfgsSolver<Rosenbrock> solver; //花费0.009秒
// solver.minimize(f, x);
// finish = clock();
// std::cout << "time cost is:" << double(finish - start) / CLOCKS_PER_SEC << "\n";
// std::cout << "argmin " << x.transpose() << std::endl;
// std::cout << "f in argmin " << f(x) << std::endl;
// return 0;
//}
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/liang_rongmin/spiralsTrajactory.git
[email protected]:liang_rongmin/spiralsTrajactory.git
liang_rongmin
spiralsTrajactory
spiralsTrajactory
master

搜索帮助