1 Star 1 Fork 0

lengjianjun/ijg

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
jidctint.c 185.59 KB
一键复制 编辑 原始数据 按行查看 历史
lengjianjun 提交于 2024-04-21 20:15 . no commit message
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240
/*
* jidctint.c
*
* Copyright (C) 1991-1998, Thomas G. Lane.
* Modification developed 2002-2018 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains a slow-but-accurate integer implementation of the
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
* must also perform dequantization of the input coefficients.
*
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
* on each row (or vice versa, but it's more convenient to emit a row at
* a time). Direct algorithms are also available, but they are much more
* complex and seem not to be any faster when reduced to code.
*
* This implementation is based on an algorithm described in
* C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
* Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
* Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
* The primary algorithm described there uses 11 multiplies and 29 adds.
* We use their alternate method with 12 multiplies and 32 adds.
* The advantage of this method is that no data path contains more than one
* multiplication; this allows a very simple and accurate implementation in
* scaled fixed-point arithmetic, with a minimal number of shifts.
*
* We also provide IDCT routines with various output sample block sizes for
* direct resolution reduction or enlargement and for direct resolving the
* common 2x1 and 1x2 subsampling cases without additional resampling: NxN
* (N=1...16), 2NxN, and Nx2N (N=1...8) pixels for one 8x8 input DCT block.
*
* For N<8 we simply take the corresponding low-frequency coefficients of
* the 8x8 input DCT block and apply an NxN point IDCT on the sub-block
* to yield the downscaled outputs.
* This can be seen as direct low-pass downsampling from the DCT domain
* point of view rather than the usual spatial domain point of view,
* yielding significant computational savings and results at least
* as good as common bilinear (averaging) spatial downsampling.
*
* For N>8 we apply a partial NxN IDCT on the 8 input coefficients as
* lower frequencies and higher frequencies assumed to be zero.
* It turns out that the computational effort is similar to the 8x8 IDCT
* regarding the output size.
* Furthermore, the scaling and descaling is the same for all IDCT sizes.
*
* CAUTION: We rely on the FIX() macro except for the N=1,2,4,8 cases
* since there would be too many additional constants to pre-calculate.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
#ifdef DCT_ISLOW_SUPPORTED
/*
* This module is specialized to the case DCTSIZE = 8.
*/
#if DCTSIZE != 8
Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */
#endif
/*
* The poop on this scaling stuff is as follows:
*
* Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
* larger than the true IDCT outputs. The final outputs are therefore
* a factor of N larger than desired; since N=8 this can be cured by
* a simple right shift at the end of the algorithm. The advantage of
* this arrangement is that we save two multiplications per 1-D IDCT,
* because the y0 and y4 inputs need not be divided by sqrt(N).
*
* We have to do addition and subtraction of the integer inputs, which
* is no problem, and multiplication by fractional constants, which is
* a problem to do in integer arithmetic. We multiply all the constants
* by CONST_SCALE and convert them to integer constants (thus retaining
* CONST_BITS bits of precision in the constants). After doing a
* multiplication we have to divide the product by CONST_SCALE, with proper
* rounding, to produce the correct output. This division can be done
* cheaply as a right shift of CONST_BITS bits. We postpone shifting
* as long as possible so that partial sums can be added together with
* full fractional precision.
*
* The outputs of the first pass are scaled up by PASS1_BITS bits so that
* they are represented to better-than-integral precision. These outputs
* require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
* with the recommended scaling. (To scale up 12-bit sample data further, an
* intermediate INT32 array would be needed.)
*
* To avoid overflow of the 32-bit intermediate results in pass 2, we must
* have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
* shows that the values given below are the most effective.
*/
#if BITS_IN_JSAMPLE == 8
#define CONST_BITS 13
#define PASS1_BITS 2
#else
#define CONST_BITS 13
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
#endif
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
* causing a lot of useless floating-point operations at run time.
* To get around this we use the following pre-calculated constants.
* If you change CONST_BITS you may want to add appropriate values.
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
*/
#if CONST_BITS == 13
#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
#else
#define FIX_0_298631336 FIX(0.298631336)
#define FIX_0_390180644 FIX(0.390180644)
#define FIX_0_541196100 FIX(0.541196100)
#define FIX_0_765366865 FIX(0.765366865)
#define FIX_0_899976223 FIX(0.899976223)
#define FIX_1_175875602 FIX(1.175875602)
#define FIX_1_501321110 FIX(1.501321110)
#define FIX_1_847759065 FIX(1.847759065)
#define FIX_1_961570560 FIX(1.961570560)
#define FIX_2_053119869 FIX(2.053119869)
#define FIX_2_562915447 FIX(2.562915447)
#define FIX_3_072711026 FIX(3.072711026)
#endif
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
* For 8-bit samples with the recommended scaling, all the variable
* and constant values involved are no more than 16 bits wide, so a
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
* For 12-bit samples, a full 32-bit multiplication will be needed.
*/
#if BITS_IN_JSAMPLE == 8
#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
#else
#define MULTIPLY(var,const) ((var) * (const))
#endif
/* Dequantize a coefficient by multiplying it by the multiplier-table
* entry; produce an int result. In this module, both inputs and result
* are 16 bits or less, so either int or short multiply will work.
*/
#define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval))
/*
* Perform dequantization and inverse DCT on one block of coefficients.
*
* Optimized algorithm with 12 multiplications in the 1-D kernel.
* cK represents sqrt(2) * cos(K*pi/16).
*/
GLOBAL(void)
jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp0, tmp1, tmp2, tmp3;
INT32 tmp10, tmp11, tmp12, tmp13;
INT32 z1, z2, z3;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[DCTSIZE2]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array.
* Note results are scaled up by sqrt(8) compared to a true IDCT;
* furthermore, we scale the results by 2**PASS1_BITS.
*/
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = DCTSIZE; ctr > 0; ctr--) {
/* Due to quantization, we will usually find that many of the input
* coefficients are zero, especially the AC terms. We can exploit this
* by short-circuiting the IDCT calculation for any column in which all
* the AC terms are zero. In that case each output is equal to the
* DC coefficient (with scale factor as needed).
* With typical images and quantization tables, half or more of the
* column DCT calculations can be simplified this way.
*/
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
inptr[DCTSIZE*7] == 0) {
/* AC terms all zero */
int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
wsptr[DCTSIZE*0] = dcval;
wsptr[DCTSIZE*1] = dcval;
wsptr[DCTSIZE*2] = dcval;
wsptr[DCTSIZE*3] = dcval;
wsptr[DCTSIZE*4] = dcval;
wsptr[DCTSIZE*5] = dcval;
wsptr[DCTSIZE*6] = dcval;
wsptr[DCTSIZE*7] = dcval;
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
continue;
}
/* Even part: reverse the even part of the forward DCT.
* The rotator is c(-6).
*/
z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
z2 <<= CONST_BITS;
z3 <<= CONST_BITS;
/* Add fudge factor here for final descale. */
z2 += ONE << (CONST_BITS-PASS1_BITS-1);
tmp0 = z2 + z3;
tmp1 = z2 - z3;
z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
tmp10 = tmp0 + tmp2;
tmp13 = tmp0 - tmp2;
tmp11 = tmp1 + tmp3;
tmp12 = tmp1 - tmp3;
/* Odd part per figure 8; the matrix is unitary and hence its
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
*/
tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
z2 = tmp0 + tmp2;
z3 = tmp1 + tmp3;
z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* c3 */
z2 = MULTIPLY(z2, - FIX_1_961570560); /* -c3-c5 */
z3 = MULTIPLY(z3, - FIX_0_390180644); /* -c3+c5 */
z2 += z1;
z3 += z1;
z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* -c1+c3+c5-c7 */
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* c1+c3-c5-c7 */
tmp0 += z1 + z2;
tmp3 += z1 + z3;
z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* c1+c3-c5+c7 */
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* c1+c3+c5-c7 */
tmp1 += z1 + z3;
tmp2 += z1 + z2;
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
wsptr[DCTSIZE*0] = (int) RIGHT_SHIFT(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*7] = (int) RIGHT_SHIFT(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*1] = (int) RIGHT_SHIFT(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*6] = (int) RIGHT_SHIFT(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*2] = (int) RIGHT_SHIFT(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*5] = (int) RIGHT_SHIFT(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*3] = (int) RIGHT_SHIFT(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*4] = (int) RIGHT_SHIFT(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
}
/* Pass 2: process rows from work array, store into output array.
* Note that we must descale the results by a factor of 8 == 2**3,
* and also undo the PASS1_BITS scaling.
*/
wsptr = workspace;
for (ctr = 0; ctr < DCTSIZE; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Add range center and fudge factor for final descale and range-limit. */
z2 = (INT32) wsptr[0] +
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
(ONE << (PASS1_BITS+2)));
/* Rows of zeroes can be exploited in the same way as we did with columns.
* However, the column calculation has created many nonzero AC terms, so
* the simplification applies less often (typically 5% to 10% of the time).
* On machines with very fast multiplication, it's possible that the
* test takes more time than it's worth. In that case this section
* may be commented out.
*/
#ifndef NO_ZERO_ROW_TEST
if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
/* AC terms all zero */
JSAMPLE dcval = range_limit[(int) RIGHT_SHIFT(z2, PASS1_BITS+3)
& RANGE_MASK];
outptr[0] = dcval;
outptr[1] = dcval;
outptr[2] = dcval;
outptr[3] = dcval;
outptr[4] = dcval;
outptr[5] = dcval;
outptr[6] = dcval;
outptr[7] = dcval;
wsptr += DCTSIZE; /* advance pointer to next row */
continue;
}
#endif
/* Even part: reverse the even part of the forward DCT.
* The rotator is c(-6).
*/
z3 = (INT32) wsptr[4];
tmp0 = (z2 + z3) << CONST_BITS;
tmp1 = (z2 - z3) << CONST_BITS;
z2 = (INT32) wsptr[2];
z3 = (INT32) wsptr[6];
z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
tmp10 = tmp0 + tmp2;
tmp13 = tmp0 - tmp2;
tmp11 = tmp1 + tmp3;
tmp12 = tmp1 - tmp3;
/* Odd part per figure 8; the matrix is unitary and hence its
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
*/
tmp0 = (INT32) wsptr[7];
tmp1 = (INT32) wsptr[5];
tmp2 = (INT32) wsptr[3];
tmp3 = (INT32) wsptr[1];
z2 = tmp0 + tmp2;
z3 = tmp1 + tmp3;
z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* c3 */
z2 = MULTIPLY(z2, - FIX_1_961570560); /* -c3-c5 */
z3 = MULTIPLY(z3, - FIX_0_390180644); /* -c3+c5 */
z2 += z1;
z3 += z1;
z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* -c1+c3+c5-c7 */
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* c1+c3-c5-c7 */
tmp0 += z1 + z2;
tmp3 += z1 + z3;
z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* c1+c3-c5+c7 */
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* c1+c3+c5-c7 */
tmp1 += z1 + z3;
tmp2 += z1 + z2;
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp3,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp3,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp2,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp2,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp1,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp1,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13 + tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp13 - tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
wsptr += DCTSIZE; /* advance pointer to next row */
}
}
#ifdef IDCT_SCALING_SUPPORTED
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a reduced-size 7x7 output block.
*
* Optimized algorithm with 12 multiplications in the 1-D kernel.
* cK represents sqrt(2) * cos(K*pi/14).
*/
GLOBAL(void)
jpeg_idct_7x7 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12, tmp13;
INT32 z1, z2, z3;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[7*7]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array. */
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = 0; ctr < 7; ctr++, inptr++, quantptr++, wsptr++) {
/* Even part */
tmp13 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
tmp13 <<= CONST_BITS;
/* Add fudge factor here for final descale. */
tmp13 += ONE << (CONST_BITS-PASS1_BITS-1);
z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
tmp10 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */
tmp12 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */
tmp11 = tmp10 + tmp12 + tmp13 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */
tmp0 = z1 + z3;
z2 -= tmp0;
tmp0 = MULTIPLY(tmp0, FIX(1.274162392)) + tmp13; /* c2 */
tmp10 += tmp0 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */
tmp12 += tmp0 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */
tmp13 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */
/* Odd part */
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
tmp1 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */
tmp2 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */
tmp0 = tmp1 - tmp2;
tmp1 += tmp2;
tmp2 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */
tmp1 += tmp2;
z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */
tmp0 += z2;
tmp2 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */
/* Final output stage */
wsptr[7*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
wsptr[7*6] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
wsptr[7*1] = (int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS-PASS1_BITS);
wsptr[7*5] = (int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS-PASS1_BITS);
wsptr[7*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS);
wsptr[7*4] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS);
wsptr[7*3] = (int) RIGHT_SHIFT(tmp13, CONST_BITS-PASS1_BITS);
}
/* Pass 2: process 7 rows from work array, store into output array. */
wsptr = workspace;
for (ctr = 0; ctr < 7; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Even part */
/* Add range center and fudge factor for final descale and range-limit. */
tmp13 = (INT32) wsptr[0] +
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
(ONE << (PASS1_BITS+2)));
tmp13 <<= CONST_BITS;
z1 = (INT32) wsptr[2];
z2 = (INT32) wsptr[4];
z3 = (INT32) wsptr[6];
tmp10 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */
tmp12 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */
tmp11 = tmp10 + tmp12 + tmp13 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */
tmp0 = z1 + z3;
z2 -= tmp0;
tmp0 = MULTIPLY(tmp0, FIX(1.274162392)) + tmp13; /* c2 */
tmp10 += tmp0 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */
tmp12 += tmp0 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */
tmp13 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */
/* Odd part */
z1 = (INT32) wsptr[1];
z2 = (INT32) wsptr[3];
z3 = (INT32) wsptr[5];
tmp1 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */
tmp2 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */
tmp0 = tmp1 - tmp2;
tmp1 += tmp2;
tmp2 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */
tmp1 += tmp2;
z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */
tmp0 += z2;
tmp2 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */
/* Final output stage */
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
wsptr += 7; /* advance pointer to next row */
}
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a reduced-size 6x6 output block.
*
* Optimized algorithm with 3 multiplications in the 1-D kernel.
* cK represents sqrt(2) * cos(K*pi/12).
*/
GLOBAL(void)
jpeg_idct_6x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12;
INT32 z1, z2, z3;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[6*6]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array. */
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = 0; ctr < 6; ctr++, inptr++, quantptr++, wsptr++) {
/* Even part */
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
tmp0 <<= CONST_BITS;
/* Add fudge factor here for final descale. */
tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */
tmp1 = tmp0 + tmp10;
tmp11 = RIGHT_SHIFT(tmp0 - tmp10 - tmp10, CONST_BITS-PASS1_BITS);
tmp10 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */
tmp10 = tmp1 + tmp0;
tmp12 = tmp1 - tmp0;
/* Odd part */
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
tmp0 = tmp1 + ((z1 + z2) << CONST_BITS);
tmp2 = tmp1 + ((z3 - z2) << CONST_BITS);
tmp1 = (z1 - z2 - z3) << PASS1_BITS;
/* Final output stage */
wsptr[6*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
wsptr[6*5] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
wsptr[6*1] = (int) (tmp11 + tmp1);
wsptr[6*4] = (int) (tmp11 - tmp1);
wsptr[6*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS);
wsptr[6*3] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS);
}
/* Pass 2: process 6 rows from work array, store into output array. */
wsptr = workspace;
for (ctr = 0; ctr < 6; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Even part */
/* Add range center and fudge factor for final descale and range-limit. */
tmp0 = (INT32) wsptr[0] +
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
(ONE << (PASS1_BITS+2)));
tmp0 <<= CONST_BITS;
tmp2 = (INT32) wsptr[4];
tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */
tmp1 = tmp0 + tmp10;
tmp11 = tmp0 - tmp10 - tmp10;
tmp10 = (INT32) wsptr[2];
tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */
tmp10 = tmp1 + tmp0;
tmp12 = tmp1 - tmp0;
/* Odd part */
z1 = (INT32) wsptr[1];
z2 = (INT32) wsptr[3];
z3 = (INT32) wsptr[5];
tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
tmp0 = tmp1 + ((z1 + z2) << CONST_BITS);
tmp2 = tmp1 + ((z3 - z2) << CONST_BITS);
tmp1 = (z1 - z2 - z3) << CONST_BITS;
/* Final output stage */
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
wsptr += 6; /* advance pointer to next row */
}
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a reduced-size 5x5 output block.
*
* Optimized algorithm with 5 multiplications in the 1-D kernel.
* cK represents sqrt(2) * cos(K*pi/10).
*/
GLOBAL(void)
jpeg_idct_5x5 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp0, tmp1, tmp10, tmp11, tmp12;
INT32 z1, z2, z3;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[5*5]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array. */
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = 0; ctr < 5; ctr++, inptr++, quantptr++, wsptr++) {
/* Even part */
tmp12 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
tmp12 <<= CONST_BITS;
/* Add fudge factor here for final descale. */
tmp12 += ONE << (CONST_BITS-PASS1_BITS-1);
tmp0 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
tmp1 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
z1 = MULTIPLY(tmp0 + tmp1, FIX(0.790569415)); /* (c2+c4)/2 */
z2 = MULTIPLY(tmp0 - tmp1, FIX(0.353553391)); /* (c2-c4)/2 */
z3 = tmp12 + z2;
tmp10 = z3 + z1;
tmp11 = z3 - z1;
tmp12 -= z2 << 2;
/* Odd part */
z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */
tmp0 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */
tmp1 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */
/* Final output stage */
wsptr[5*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
wsptr[5*4] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
wsptr[5*1] = (int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS-PASS1_BITS);
wsptr[5*3] = (int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS-PASS1_BITS);
wsptr[5*2] = (int) RIGHT_SHIFT(tmp12, CONST_BITS-PASS1_BITS);
}
/* Pass 2: process 5 rows from work array, store into output array. */
wsptr = workspace;
for (ctr = 0; ctr < 5; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Even part */
/* Add range center and fudge factor for final descale and range-limit. */
tmp12 = (INT32) wsptr[0] +
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
(ONE << (PASS1_BITS+2)));
tmp12 <<= CONST_BITS;
tmp0 = (INT32) wsptr[2];
tmp1 = (INT32) wsptr[4];
z1 = MULTIPLY(tmp0 + tmp1, FIX(0.790569415)); /* (c2+c4)/2 */
z2 = MULTIPLY(tmp0 - tmp1, FIX(0.353553391)); /* (c2-c4)/2 */
z3 = tmp12 + z2;
tmp10 = z3 + z1;
tmp11 = z3 - z1;
tmp12 -= z2 << 2;
/* Odd part */
z2 = (INT32) wsptr[1];
z3 = (INT32) wsptr[3];
z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */
tmp0 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */
tmp1 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */
/* Final output stage */
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
wsptr += 5; /* advance pointer to next row */
}
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a reduced-size 4x4 output block.
*
* Optimized algorithm with 3 multiplications in the 1-D kernel.
* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point IDCT].
*/
GLOBAL(void)
jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp0, tmp2, tmp10, tmp12;
INT32 z1, z2, z3;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[4*4]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array. */
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = 0; ctr < 4; ctr++, inptr++, quantptr++, wsptr++) {
/* Even part */
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
tmp10 = (tmp0 + tmp2) << PASS1_BITS;
tmp12 = (tmp0 - tmp2) << PASS1_BITS;
/* Odd part */
/* Same rotation as in the even part of the 8x8 LL&M IDCT */
z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
/* Add fudge factor here for final descale. */
z1 += ONE << (CONST_BITS-PASS1_BITS-1);
tmp0 = RIGHT_SHIFT(z1 + MULTIPLY(z2, FIX_0_765366865), /* c2-c6 */
CONST_BITS-PASS1_BITS);
tmp2 = RIGHT_SHIFT(z1 - MULTIPLY(z3, FIX_1_847759065), /* c2+c6 */
CONST_BITS-PASS1_BITS);
/* Final output stage */
wsptr[4*0] = (int) (tmp10 + tmp0);
wsptr[4*3] = (int) (tmp10 - tmp0);
wsptr[4*1] = (int) (tmp12 + tmp2);
wsptr[4*2] = (int) (tmp12 - tmp2);
}
/* Pass 2: process 4 rows from work array, store into output array. */
wsptr = workspace;
for (ctr = 0; ctr < 4; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Even part */
/* Add range center and fudge factor for final descale and range-limit. */
tmp0 = (INT32) wsptr[0] +
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
(ONE << (PASS1_BITS+2)));
tmp2 = (INT32) wsptr[2];
tmp10 = (tmp0 + tmp2) << CONST_BITS;
tmp12 = (tmp0 - tmp2) << CONST_BITS;
/* Odd part */
/* Same rotation as in the even part of the 8x8 LL&M IDCT */
z2 = (INT32) wsptr[1];
z3 = (INT32) wsptr[3];
z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
tmp0 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
tmp2 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
/* Final output stage */
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
wsptr += 4; /* advance pointer to next row */
}
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a reduced-size 3x3 output block.
*
* Optimized algorithm with 2 multiplications in the 1-D kernel.
* cK represents sqrt(2) * cos(K*pi/6).
*/
GLOBAL(void)
jpeg_idct_3x3 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp0, tmp2, tmp10, tmp12;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[3*3]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array. */
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = 0; ctr < 3; ctr++, inptr++, quantptr++, wsptr++) {
/* Even part */
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
tmp0 <<= CONST_BITS;
/* Add fudge factor here for final descale. */
tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */
tmp10 = tmp0 + tmp12;
tmp2 = tmp0 - tmp12 - tmp12;
/* Odd part */
tmp12 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */
/* Final output stage */
wsptr[3*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
wsptr[3*2] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
wsptr[3*1] = (int) RIGHT_SHIFT(tmp2, CONST_BITS-PASS1_BITS);
}
/* Pass 2: process 3 rows from work array, store into output array. */
wsptr = workspace;
for (ctr = 0; ctr < 3; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Even part */
/* Add range center and fudge factor for final descale and range-limit. */
tmp0 = (INT32) wsptr[0] +
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
(ONE << (PASS1_BITS+2)));
tmp0 <<= CONST_BITS;
tmp2 = (INT32) wsptr[2];
tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */
tmp10 = tmp0 + tmp12;
tmp2 = tmp0 - tmp12 - tmp12;
/* Odd part */
tmp12 = (INT32) wsptr[1];
tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */
/* Final output stage */
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp2,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
wsptr += 3; /* advance pointer to next row */
}
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a reduced-size 2x2 output block.
*
* Multiplication-less algorithm.
*/
GLOBAL(void)
jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;
ISLOW_MULT_TYPE * quantptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
ISHIFT_TEMPS
/* Pass 1: process columns from input. */
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
/* Column 0 */
tmp4 = DEQUANTIZE(coef_block[DCTSIZE*0], quantptr[DCTSIZE*0]);
tmp5 = DEQUANTIZE(coef_block[DCTSIZE*1], quantptr[DCTSIZE*1]);
/* Add range center and fudge factor for final descale and range-limit. */
tmp4 += (((DCTELEM) RANGE_CENTER) << 3) + (1 << 2);
tmp0 = tmp4 + tmp5;
tmp2 = tmp4 - tmp5;
/* Column 1 */
tmp4 = DEQUANTIZE(coef_block[DCTSIZE*0+1], quantptr[DCTSIZE*0+1]);
tmp5 = DEQUANTIZE(coef_block[DCTSIZE*1+1], quantptr[DCTSIZE*1+1]);
tmp1 = tmp4 + tmp5;
tmp3 = tmp4 - tmp5;
/* Pass 2: process 2 rows, store into output array. */
/* Row 0 */
outptr = output_buf[0] + output_col;
outptr[0] = range_limit[(int) IRIGHT_SHIFT(tmp0 + tmp1, 3) & RANGE_MASK];
outptr[1] = range_limit[(int) IRIGHT_SHIFT(tmp0 - tmp1, 3) & RANGE_MASK];
/* Row 1 */
outptr = output_buf[1] + output_col;
outptr[0] = range_limit[(int) IRIGHT_SHIFT(tmp2 + tmp3, 3) & RANGE_MASK];
outptr[1] = range_limit[(int) IRIGHT_SHIFT(tmp2 - tmp3, 3) & RANGE_MASK];
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a reduced-size 1x1 output block.
*
* We hardly need an inverse DCT routine for this: just take the
* average pixel value, which is one-eighth of the DC coefficient.
*/
GLOBAL(void)
jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
DCTELEM dcval;
ISLOW_MULT_TYPE * quantptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
ISHIFT_TEMPS
/* 1x1 is trivial: just take the DC coefficient divided by 8. */
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
/* Add range center and fudge factor for descale and range-limit. */
dcval += (((DCTELEM) RANGE_CENTER) << 3) + (1 << 2);
output_buf[0][output_col] =
range_limit[(int) IRIGHT_SHIFT(dcval, 3) & RANGE_MASK];
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a 9x9 output block.
*
* Optimized algorithm with 10 multiplications in the 1-D kernel.
* cK represents sqrt(2) * cos(K*pi/18).
*/
GLOBAL(void)
jpeg_idct_9x9 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13, tmp14;
INT32 z1, z2, z3, z4;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[8*9]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array. */
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
/* Even part */
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
tmp0 <<= CONST_BITS;
/* Add fudge factor here for final descale. */
tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
tmp3 = MULTIPLY(z3, FIX(0.707106781)); /* c6 */
tmp1 = tmp0 + tmp3;
tmp2 = tmp0 - tmp3 - tmp3;
tmp0 = MULTIPLY(z1 - z2, FIX(0.707106781)); /* c6 */
tmp11 = tmp2 + tmp0;
tmp14 = tmp2 - tmp0 - tmp0;
tmp0 = MULTIPLY(z1 + z2, FIX(1.328926049)); /* c2 */
tmp2 = MULTIPLY(z1, FIX(1.083350441)); /* c4 */
tmp3 = MULTIPLY(z2, FIX(0.245575608)); /* c8 */
tmp10 = tmp1 + tmp0 - tmp3;
tmp12 = tmp1 - tmp0 + tmp2;
tmp13 = tmp1 - tmp2 + tmp3;
/* Odd part */
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
z2 = MULTIPLY(z2, - FIX(1.224744871)); /* -c3 */
tmp2 = MULTIPLY(z1 + z3, FIX(0.909038955)); /* c5 */
tmp3 = MULTIPLY(z1 + z4, FIX(0.483689525)); /* c7 */
tmp0 = tmp2 + tmp3 - z2;
tmp1 = MULTIPLY(z3 - z4, FIX(1.392728481)); /* c1 */
tmp2 += z2 - tmp1;
tmp3 += z2 + tmp1;
tmp1 = MULTIPLY(z1 - z3 - z4, FIX(1.224744871)); /* c3 */
/* Final output stage */
wsptr[8*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
wsptr[8*8] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
wsptr[8*1] = (int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS-PASS1_BITS);
wsptr[8*7] = (int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS-PASS1_BITS);
wsptr[8*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS);
wsptr[8*6] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS);
wsptr[8*3] = (int) RIGHT_SHIFT(tmp13 + tmp3, CONST_BITS-PASS1_BITS);
wsptr[8*5] = (int) RIGHT_SHIFT(tmp13 - tmp3, CONST_BITS-PASS1_BITS);
wsptr[8*4] = (int) RIGHT_SHIFT(tmp14, CONST_BITS-PASS1_BITS);
}
/* Pass 2: process 9 rows from work array, store into output array. */
wsptr = workspace;
for (ctr = 0; ctr < 9; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Even part */
/* Add range center and fudge factor for final descale and range-limit. */
tmp0 = (INT32) wsptr[0] +
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
(ONE << (PASS1_BITS+2)));
tmp0 <<= CONST_BITS;
z1 = (INT32) wsptr[2];
z2 = (INT32) wsptr[4];
z3 = (INT32) wsptr[6];
tmp3 = MULTIPLY(z3, FIX(0.707106781)); /* c6 */
tmp1 = tmp0 + tmp3;
tmp2 = tmp0 - tmp3 - tmp3;
tmp0 = MULTIPLY(z1 - z2, FIX(0.707106781)); /* c6 */
tmp11 = tmp2 + tmp0;
tmp14 = tmp2 - tmp0 - tmp0;
tmp0 = MULTIPLY(z1 + z2, FIX(1.328926049)); /* c2 */
tmp2 = MULTIPLY(z1, FIX(1.083350441)); /* c4 */
tmp3 = MULTIPLY(z2, FIX(0.245575608)); /* c8 */
tmp10 = tmp1 + tmp0 - tmp3;
tmp12 = tmp1 - tmp0 + tmp2;
tmp13 = tmp1 - tmp2 + tmp3;
/* Odd part */
z1 = (INT32) wsptr[1];
z2 = (INT32) wsptr[3];
z3 = (INT32) wsptr[5];
z4 = (INT32) wsptr[7];
z2 = MULTIPLY(z2, - FIX(1.224744871)); /* -c3 */
tmp2 = MULTIPLY(z1 + z3, FIX(0.909038955)); /* c5 */
tmp3 = MULTIPLY(z1 + z4, FIX(0.483689525)); /* c7 */
tmp0 = tmp2 + tmp3 - z2;
tmp1 = MULTIPLY(z3 - z4, FIX(1.392728481)); /* c1 */
tmp2 += z2 - tmp1;
tmp3 += z2 + tmp1;
tmp1 = MULTIPLY(z1 - z3 - z4, FIX(1.224744871)); /* c3 */
/* Final output stage */
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13 + tmp3,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp13 - tmp3,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp14,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
wsptr += 8; /* advance pointer to next row */
}
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a 10x10 output block.
*
* Optimized algorithm with 12 multiplications in the 1-D kernel.
* cK represents sqrt(2) * cos(K*pi/20).
*/
GLOBAL(void)
jpeg_idct_10x10 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
INT32 tmp20, tmp21, tmp22, tmp23, tmp24;
INT32 z1, z2, z3, z4, z5;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[8*10]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array. */
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
/* Even part */
z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
z3 <<= CONST_BITS;
/* Add fudge factor here for final descale. */
z3 += ONE << (CONST_BITS-PASS1_BITS-1);
z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */
z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */
tmp10 = z3 + z1;
tmp11 = z3 - z2;
tmp22 = RIGHT_SHIFT(z3 - ((z1 - z2) << 1), /* c0 = (c4-c8)*2 */
CONST_BITS-PASS1_BITS);
z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */
tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */
tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */
tmp20 = tmp10 + tmp12;
tmp24 = tmp10 - tmp12;
tmp21 = tmp11 + tmp13;
tmp23 = tmp11 - tmp13;
/* Odd part */
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
tmp11 = z2 + z4;
tmp13 = z2 - z4;
tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */
z5 = z3 << CONST_BITS;
z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */
z4 = z5 + tmp12;
tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */
tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */
z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */
z4 = z5 - tmp12 - (tmp13 << (CONST_BITS - 1));
tmp12 = (z1 - tmp13 - z3) << PASS1_BITS;
tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */
tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */
/* Final output stage */
wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
wsptr[8*9] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
wsptr[8*8] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
wsptr[8*2] = (int) (tmp22 + tmp12);
wsptr[8*7] = (int) (tmp22 - tmp12);
wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
wsptr[8*6] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
wsptr[8*5] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
}
/* Pass 2: process 10 rows from work array, store into output array. */
wsptr = workspace;
for (ctr = 0; ctr < 10; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Even part */
/* Add range center and fudge factor for final descale and range-limit. */
z3 = (INT32) wsptr[0] +
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
(ONE << (PASS1_BITS+2)));
z3 <<= CONST_BITS;
z4 = (INT32) wsptr[4];
z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */
z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */
tmp10 = z3 + z1;
tmp11 = z3 - z2;
tmp22 = z3 - ((z1 - z2) << 1); /* c0 = (c4-c8)*2 */
z2 = (INT32) wsptr[2];
z3 = (INT32) wsptr[6];
z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */
tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */
tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */
tmp20 = tmp10 + tmp12;
tmp24 = tmp10 - tmp12;
tmp21 = tmp11 + tmp13;
tmp23 = tmp11 - tmp13;
/* Odd part */
z1 = (INT32) wsptr[1];
z2 = (INT32) wsptr[3];
z3 = (INT32) wsptr[5];
z3 <<= CONST_BITS;
z4 = (INT32) wsptr[7];
tmp11 = z2 + z4;
tmp13 = z2 - z4;
tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */
z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */
z4 = z3 + tmp12;
tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */
tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */
z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */
z4 = z3 - tmp12 - (tmp13 << (CONST_BITS - 1));
tmp12 = ((z1 - tmp13) << CONST_BITS) - z3;
tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */
tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */
/* Final output stage */
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
wsptr += 8; /* advance pointer to next row */
}
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing an 11x11 output block.
*
* Optimized algorithm with 24 multiplications in the 1-D kernel.
* cK represents sqrt(2) * cos(K*pi/22).
*/
GLOBAL(void)
jpeg_idct_11x11 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25;
INT32 z1, z2, z3, z4;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[8*11]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array. */
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
/* Even part */
tmp10 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
tmp10 <<= CONST_BITS;
/* Add fudge factor here for final descale. */
tmp10 += ONE << (CONST_BITS-PASS1_BITS-1);
z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
tmp20 = MULTIPLY(z2 - z3, FIX(2.546640132)); /* c2+c4 */
tmp23 = MULTIPLY(z2 - z1, FIX(0.430815045)); /* c2-c6 */
z4 = z1 + z3;
tmp24 = MULTIPLY(z4, - FIX(1.155664402)); /* -(c2-c10) */
z4 -= z2;
tmp25 = tmp10 + MULTIPLY(z4, FIX(1.356927976)); /* c2 */
tmp21 = tmp20 + tmp23 + tmp25 -
MULTIPLY(z2, FIX(1.821790775)); /* c2+c4+c10-c6 */
tmp20 += tmp25 + MULTIPLY(z3, FIX(2.115825087)); /* c4+c6 */
tmp23 += tmp25 - MULTIPLY(z1, FIX(1.513598477)); /* c6+c8 */
tmp24 += tmp25;
tmp22 = tmp24 - MULTIPLY(z3, FIX(0.788749120)); /* c8+c10 */
tmp24 += MULTIPLY(z2, FIX(1.944413522)) - /* c2+c8 */
MULTIPLY(z1, FIX(1.390975730)); /* c4+c10 */
tmp25 = tmp10 - MULTIPLY(z4, FIX(1.414213562)); /* c0 */
/* Odd part */
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
tmp11 = z1 + z2;
tmp14 = MULTIPLY(tmp11 + z3 + z4, FIX(0.398430003)); /* c9 */
tmp11 = MULTIPLY(tmp11, FIX(0.887983902)); /* c3-c9 */
tmp12 = MULTIPLY(z1 + z3, FIX(0.670361295)); /* c5-c9 */
tmp13 = tmp14 + MULTIPLY(z1 + z4, FIX(0.366151574)); /* c7-c9 */
tmp10 = tmp11 + tmp12 + tmp13 -
MULTIPLY(z1, FIX(0.923107866)); /* c7+c5+c3-c1-2*c9 */
z1 = tmp14 - MULTIPLY(z2 + z3, FIX(1.163011579)); /* c7+c9 */
tmp11 += z1 + MULTIPLY(z2, FIX(2.073276588)); /* c1+c7+3*c9-c3 */
tmp12 += z1 - MULTIPLY(z3, FIX(1.192193623)); /* c3+c5-c7-c9 */
z1 = MULTIPLY(z2 + z4, - FIX(1.798248910)); /* -(c1+c9) */
tmp11 += z1;
tmp13 += z1 + MULTIPLY(z4, FIX(2.102458632)); /* c1+c5+c9-c7 */
tmp14 += MULTIPLY(z2, - FIX(1.467221301)) + /* -(c5+c9) */
MULTIPLY(z3, FIX(1.001388905)) - /* c1-c9 */
MULTIPLY(z4, FIX(1.684843907)); /* c3+c9 */
/* Final output stage */
wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
wsptr[8*10] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
wsptr[8*9] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
wsptr[8*8] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
wsptr[8*7] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
wsptr[8*6] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
wsptr[8*5] = (int) RIGHT_SHIFT(tmp25, CONST_BITS-PASS1_BITS);
}
/* Pass 2: process 11 rows from work array, store into output array. */
wsptr = workspace;
for (ctr = 0; ctr < 11; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Even part */
/* Add range center and fudge factor for final descale and range-limit. */
tmp10 = (INT32) wsptr[0] +
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
(ONE << (PASS1_BITS+2)));
tmp10 <<= CONST_BITS;
z1 = (INT32) wsptr[2];
z2 = (INT32) wsptr[4];
z3 = (INT32) wsptr[6];
tmp20 = MULTIPLY(z2 - z3, FIX(2.546640132)); /* c2+c4 */
tmp23 = MULTIPLY(z2 - z1, FIX(0.430815045)); /* c2-c6 */
z4 = z1 + z3;
tmp24 = MULTIPLY(z4, - FIX(1.155664402)); /* -(c2-c10) */
z4 -= z2;
tmp25 = tmp10 + MULTIPLY(z4, FIX(1.356927976)); /* c2 */
tmp21 = tmp20 + tmp23 + tmp25 -
MULTIPLY(z2, FIX(1.821790775)); /* c2+c4+c10-c6 */
tmp20 += tmp25 + MULTIPLY(z3, FIX(2.115825087)); /* c4+c6 */
tmp23 += tmp25 - MULTIPLY(z1, FIX(1.513598477)); /* c6+c8 */
tmp24 += tmp25;
tmp22 = tmp24 - MULTIPLY(z3, FIX(0.788749120)); /* c8+c10 */
tmp24 += MULTIPLY(z2, FIX(1.944413522)) - /* c2+c8 */
MULTIPLY(z1, FIX(1.390975730)); /* c4+c10 */
tmp25 = tmp10 - MULTIPLY(z4, FIX(1.414213562)); /* c0 */
/* Odd part */
z1 = (INT32) wsptr[1];
z2 = (INT32) wsptr[3];
z3 = (INT32) wsptr[5];
z4 = (INT32) wsptr[7];
tmp11 = z1 + z2;
tmp14 = MULTIPLY(tmp11 + z3 + z4, FIX(0.398430003)); /* c9 */
tmp11 = MULTIPLY(tmp11, FIX(0.887983902)); /* c3-c9 */
tmp12 = MULTIPLY(z1 + z3, FIX(0.670361295)); /* c5-c9 */
tmp13 = tmp14 + MULTIPLY(z1 + z4, FIX(0.366151574)); /* c7-c9 */
tmp10 = tmp11 + tmp12 + tmp13 -
MULTIPLY(z1, FIX(0.923107866)); /* c7+c5+c3-c1-2*c9 */
z1 = tmp14 - MULTIPLY(z2 + z3, FIX(1.163011579)); /* c7+c9 */
tmp11 += z1 + MULTIPLY(z2, FIX(2.073276588)); /* c1+c7+3*c9-c3 */
tmp12 += z1 - MULTIPLY(z3, FIX(1.192193623)); /* c3+c5-c7-c9 */
z1 = MULTIPLY(z2 + z4, - FIX(1.798248910)); /* -(c1+c9) */
tmp11 += z1;
tmp13 += z1 + MULTIPLY(z4, FIX(2.102458632)); /* c1+c5+c9-c7 */
tmp14 += MULTIPLY(z2, - FIX(1.467221301)) + /* -(c5+c9) */
MULTIPLY(z3, FIX(1.001388905)) - /* c1-c9 */
MULTIPLY(z4, FIX(1.684843907)); /* c3+c9 */
/* Final output stage */
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
wsptr += 8; /* advance pointer to next row */
}
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a 12x12 output block.
*
* Optimized algorithm with 15 multiplications in the 1-D kernel.
* cK represents sqrt(2) * cos(K*pi/24).
*/
GLOBAL(void)
jpeg_idct_12x12 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25;
INT32 z1, z2, z3, z4;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[8*12]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array. */
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
/* Even part */
z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
z3 <<= CONST_BITS;
/* Add fudge factor here for final descale. */
z3 += ONE << (CONST_BITS-PASS1_BITS-1);
z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */
tmp10 = z3 + z4;
tmp11 = z3 - z4;
z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */
z1 <<= CONST_BITS;
z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
z2 <<= CONST_BITS;
tmp12 = z1 - z2;
tmp21 = z3 + tmp12;
tmp24 = z3 - tmp12;
tmp12 = z4 + z2;
tmp20 = tmp10 + tmp12;
tmp25 = tmp10 - tmp12;
tmp12 = z4 - z1 - z2;
tmp22 = tmp11 + tmp12;
tmp23 = tmp11 - tmp12;
/* Odd part */
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */
tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */
tmp10 = z1 + z3;
tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */
tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */
tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */
tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */
tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */
tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */
tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */
MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */
z1 -= z4;
z2 -= z3;
z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */
tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */
tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */
/* Final output stage */
wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
wsptr[8*11] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
wsptr[8*10] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
wsptr[8*9] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
wsptr[8*8] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
wsptr[8*7] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
wsptr[8*6] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
}
/* Pass 2: process 12 rows from work array, store into output array. */
wsptr = workspace;
for (ctr = 0; ctr < 12; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Even part */
/* Add range center and fudge factor for final descale and range-limit. */
z3 = (INT32) wsptr[0] +
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
(ONE << (PASS1_BITS+2)));
z3 <<= CONST_BITS;
z4 = (INT32) wsptr[4];
z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */
tmp10 = z3 + z4;
tmp11 = z3 - z4;
z1 = (INT32) wsptr[2];
z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */
z1 <<= CONST_BITS;
z2 = (INT32) wsptr[6];
z2 <<= CONST_BITS;
tmp12 = z1 - z2;
tmp21 = z3 + tmp12;
tmp24 = z3 - tmp12;
tmp12 = z4 + z2;
tmp20 = tmp10 + tmp12;
tmp25 = tmp10 - tmp12;
tmp12 = z4 - z1 - z2;
tmp22 = tmp11 + tmp12;
tmp23 = tmp11 - tmp12;
/* Odd part */
z1 = (INT32) wsptr[1];
z2 = (INT32) wsptr[3];
z3 = (INT32) wsptr[5];
z4 = (INT32) wsptr[7];
tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */
tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */
tmp10 = z1 + z3;
tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */
tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */
tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */
tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */
tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */
tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */
tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */
MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */
z1 -= z4;
z2 -= z3;
z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */
tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */
tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */
/* Final output stage */
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
wsptr += 8; /* advance pointer to next row */
}
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a 13x13 output block.
*
* Optimized algorithm with 29 multiplications in the 1-D kernel.
* cK represents sqrt(2) * cos(K*pi/26).
*/
GLOBAL(void)
jpeg_idct_13x13 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26;
INT32 z1, z2, z3, z4;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[8*13]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array. */
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
/* Even part */
z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
z1 <<= CONST_BITS;
/* Add fudge factor here for final descale. */
z1 += ONE << (CONST_BITS-PASS1_BITS-1);
z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
z4 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
tmp10 = z3 + z4;
tmp11 = z3 - z4;
tmp12 = MULTIPLY(tmp10, FIX(1.155388986)); /* (c4+c6)/2 */
tmp13 = MULTIPLY(tmp11, FIX(0.096834934)) + z1; /* (c4-c6)/2 */
tmp20 = MULTIPLY(z2, FIX(1.373119086)) + tmp12 + tmp13; /* c2 */
tmp22 = MULTIPLY(z2, FIX(0.501487041)) - tmp12 + tmp13; /* c10 */
tmp12 = MULTIPLY(tmp10, FIX(0.316450131)); /* (c8-c12)/2 */
tmp13 = MULTIPLY(tmp11, FIX(0.486914739)) + z1; /* (c8+c12)/2 */
tmp21 = MULTIPLY(z2, FIX(1.058554052)) - tmp12 + tmp13; /* c6 */
tmp25 = MULTIPLY(z2, - FIX(1.252223920)) + tmp12 + tmp13; /* c4 */
tmp12 = MULTIPLY(tmp10, FIX(0.435816023)); /* (c2-c10)/2 */
tmp13 = MULTIPLY(tmp11, FIX(0.937303064)) - z1; /* (c2+c10)/2 */
tmp23 = MULTIPLY(z2, - FIX(0.170464608)) - tmp12 - tmp13; /* c12 */
tmp24 = MULTIPLY(z2, - FIX(0.803364869)) + tmp12 - tmp13; /* c8 */
tmp26 = MULTIPLY(tmp11 - z2, FIX(1.414213562)) + z1; /* c0 */
/* Odd part */
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
tmp11 = MULTIPLY(z1 + z2, FIX(1.322312651)); /* c3 */
tmp12 = MULTIPLY(z1 + z3, FIX(1.163874945)); /* c5 */
tmp15 = z1 + z4;
tmp13 = MULTIPLY(tmp15, FIX(0.937797057)); /* c7 */
tmp10 = tmp11 + tmp12 + tmp13 -
MULTIPLY(z1, FIX(2.020082300)); /* c7+c5+c3-c1 */
tmp14 = MULTIPLY(z2 + z3, - FIX(0.338443458)); /* -c11 */
tmp11 += tmp14 + MULTIPLY(z2, FIX(0.837223564)); /* c5+c9+c11-c3 */
tmp12 += tmp14 - MULTIPLY(z3, FIX(1.572116027)); /* c1+c5-c9-c11 */
tmp14 = MULTIPLY(z2 + z4, - FIX(1.163874945)); /* -c5 */
tmp11 += tmp14;
tmp13 += tmp14 + MULTIPLY(z4, FIX(2.205608352)); /* c3+c5+c9-c7 */
tmp14 = MULTIPLY(z3 + z4, - FIX(0.657217813)); /* -c9 */
tmp12 += tmp14;
tmp13 += tmp14;
tmp15 = MULTIPLY(tmp15, FIX(0.338443458)); /* c11 */
tmp14 = tmp15 + MULTIPLY(z1, FIX(0.318774355)) - /* c9-c11 */
MULTIPLY(z2, FIX(0.466105296)); /* c1-c7 */
z1 = MULTIPLY(z3 - z2, FIX(0.937797057)); /* c7 */
tmp14 += z1;
tmp15 += z1 + MULTIPLY(z3, FIX(0.384515595)) - /* c3-c7 */
MULTIPLY(z4, FIX(1.742345811)); /* c1+c11 */
/* Final output stage */
wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
wsptr[8*12] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
wsptr[8*11] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
wsptr[8*10] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
wsptr[8*9] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
wsptr[8*8] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
wsptr[8*7] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
wsptr[8*6] = (int) RIGHT_SHIFT(tmp26, CONST_BITS-PASS1_BITS);
}
/* Pass 2: process 13 rows from work array, store into output array. */
wsptr = workspace;
for (ctr = 0; ctr < 13; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Even part */
/* Add range center and fudge factor for final descale and range-limit. */
z1 = (INT32) wsptr[0] +
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
(ONE << (PASS1_BITS+2)));
z1 <<= CONST_BITS;
z2 = (INT32) wsptr[2];
z3 = (INT32) wsptr[4];
z4 = (INT32) wsptr[6];
tmp10 = z3 + z4;
tmp11 = z3 - z4;
tmp12 = MULTIPLY(tmp10, FIX(1.155388986)); /* (c4+c6)/2 */
tmp13 = MULTIPLY(tmp11, FIX(0.096834934)) + z1; /* (c4-c6)/2 */
tmp20 = MULTIPLY(z2, FIX(1.373119086)) + tmp12 + tmp13; /* c2 */
tmp22 = MULTIPLY(z2, FIX(0.501487041)) - tmp12 + tmp13; /* c10 */
tmp12 = MULTIPLY(tmp10, FIX(0.316450131)); /* (c8-c12)/2 */
tmp13 = MULTIPLY(tmp11, FIX(0.486914739)) + z1; /* (c8+c12)/2 */
tmp21 = MULTIPLY(z2, FIX(1.058554052)) - tmp12 + tmp13; /* c6 */
tmp25 = MULTIPLY(z2, - FIX(1.252223920)) + tmp12 + tmp13; /* c4 */
tmp12 = MULTIPLY(tmp10, FIX(0.435816023)); /* (c2-c10)/2 */
tmp13 = MULTIPLY(tmp11, FIX(0.937303064)) - z1; /* (c2+c10)/2 */
tmp23 = MULTIPLY(z2, - FIX(0.170464608)) - tmp12 - tmp13; /* c12 */
tmp24 = MULTIPLY(z2, - FIX(0.803364869)) + tmp12 - tmp13; /* c8 */
tmp26 = MULTIPLY(tmp11 - z2, FIX(1.414213562)) + z1; /* c0 */
/* Odd part */
z1 = (INT32) wsptr[1];
z2 = (INT32) wsptr[3];
z3 = (INT32) wsptr[5];
z4 = (INT32) wsptr[7];
tmp11 = MULTIPLY(z1 + z2, FIX(1.322312651)); /* c3 */
tmp12 = MULTIPLY(z1 + z3, FIX(1.163874945)); /* c5 */
tmp15 = z1 + z4;
tmp13 = MULTIPLY(tmp15, FIX(0.937797057)); /* c7 */
tmp10 = tmp11 + tmp12 + tmp13 -
MULTIPLY(z1, FIX(2.020082300)); /* c7+c5+c3-c1 */
tmp14 = MULTIPLY(z2 + z3, - FIX(0.338443458)); /* -c11 */
tmp11 += tmp14 + MULTIPLY(z2, FIX(0.837223564)); /* c5+c9+c11-c3 */
tmp12 += tmp14 - MULTIPLY(z3, FIX(1.572116027)); /* c1+c5-c9-c11 */
tmp14 = MULTIPLY(z2 + z4, - FIX(1.163874945)); /* -c5 */
tmp11 += tmp14;
tmp13 += tmp14 + MULTIPLY(z4, FIX(2.205608352)); /* c3+c5+c9-c7 */
tmp14 = MULTIPLY(z3 + z4, - FIX(0.657217813)); /* -c9 */
tmp12 += tmp14;
tmp13 += tmp14;
tmp15 = MULTIPLY(tmp15, FIX(0.338443458)); /* c11 */
tmp14 = tmp15 + MULTIPLY(z1, FIX(0.318774355)) - /* c9-c11 */
MULTIPLY(z2, FIX(0.466105296)); /* c1-c7 */
z1 = MULTIPLY(z3 - z2, FIX(0.937797057)); /* c7 */
tmp14 += z1;
tmp15 += z1 + MULTIPLY(z3, FIX(0.384515595)) - /* c3-c7 */
MULTIPLY(z4, FIX(1.742345811)); /* c1+c11 */
/* Final output stage */
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
wsptr += 8; /* advance pointer to next row */
}
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a 14x14 output block.
*
* Optimized algorithm with 20 multiplications in the 1-D kernel.
* cK represents sqrt(2) * cos(K*pi/28).
*/
GLOBAL(void)
jpeg_idct_14x14 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26;
INT32 z1, z2, z3, z4;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[8*14]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array. */
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
/* Even part */
z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
z1 <<= CONST_BITS;
/* Add fudge factor here for final descale. */
z1 += ONE << (CONST_BITS-PASS1_BITS-1);
z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */
z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */
z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */
tmp10 = z1 + z2;
tmp11 = z1 + z3;
tmp12 = z1 - z4;
tmp23 = RIGHT_SHIFT(z1 - ((z2 + z3 - z4) << 1), /* c0 = (c4+c12-c8)*2 */
CONST_BITS-PASS1_BITS);
z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */
tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */
tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */
tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */
MULTIPLY(z2, FIX(1.378756276)); /* c2 */
tmp20 = tmp10 + tmp13;
tmp26 = tmp10 - tmp13;
tmp21 = tmp11 + tmp14;
tmp25 = tmp11 - tmp14;
tmp22 = tmp12 + tmp15;
tmp24 = tmp12 - tmp15;
/* Odd part */
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
tmp13 = z4 << CONST_BITS;
tmp14 = z1 + z3;
tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */
tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */
tmp10 = tmp11 + tmp12 + tmp13 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */
tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */
tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */
z1 -= z2;
tmp15 = MULTIPLY(z1, FIX(0.467085129)) - tmp13; /* c11 */
tmp16 += tmp15;
z1 += z4;
z4 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - tmp13; /* -c13 */
tmp11 += z4 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */
tmp12 += z4 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */
z4 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */
tmp14 += z4 + tmp13 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */
tmp15 += z4 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */
tmp13 = (z1 - z3) << PASS1_BITS;
/* Final output stage */
wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
wsptr[8*13] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
wsptr[8*12] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
wsptr[8*11] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
wsptr[8*3] = (int) (tmp23 + tmp13);
wsptr[8*10] = (int) (tmp23 - tmp13);
wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
wsptr[8*9] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
wsptr[8*8] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS-PASS1_BITS);
wsptr[8*7] = (int) RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS-PASS1_BITS);
}
/* Pass 2: process 14 rows from work array, store into output array. */
wsptr = workspace;
for (ctr = 0; ctr < 14; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Even part */
/* Add range center and fudge factor for final descale and range-limit. */
z1 = (INT32) wsptr[0] +
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
(ONE << (PASS1_BITS+2)));
z1 <<= CONST_BITS;
z4 = (INT32) wsptr[4];
z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */
z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */
z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */
tmp10 = z1 + z2;
tmp11 = z1 + z3;
tmp12 = z1 - z4;
tmp23 = z1 - ((z2 + z3 - z4) << 1); /* c0 = (c4+c12-c8)*2 */
z1 = (INT32) wsptr[2];
z2 = (INT32) wsptr[6];
z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */
tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */
tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */
tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */
MULTIPLY(z2, FIX(1.378756276)); /* c2 */
tmp20 = tmp10 + tmp13;
tmp26 = tmp10 - tmp13;
tmp21 = tmp11 + tmp14;
tmp25 = tmp11 - tmp14;
tmp22 = tmp12 + tmp15;
tmp24 = tmp12 - tmp15;
/* Odd part */
z1 = (INT32) wsptr[1];
z2 = (INT32) wsptr[3];
z3 = (INT32) wsptr[5];
z4 = (INT32) wsptr[7];
z4 <<= CONST_BITS;
tmp14 = z1 + z3;
tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */
tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */
tmp10 = tmp11 + tmp12 + z4 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */
tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */
tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */
z1 -= z2;
tmp15 = MULTIPLY(z1, FIX(0.467085129)) - z4; /* c11 */
tmp16 += tmp15;
tmp13 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - z4; /* -c13 */
tmp11 += tmp13 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */
tmp12 += tmp13 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */
tmp13 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */
tmp14 += tmp13 + z4 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */
tmp15 += tmp13 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */
tmp13 = ((z1 - z3) << CONST_BITS) + z4;
/* Final output stage */
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp16,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp16,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
wsptr += 8; /* advance pointer to next row */
}
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a 15x15 output block.
*
* Optimized algorithm with 22 multiplications in the 1-D kernel.
* cK represents sqrt(2) * cos(K*pi/30).
*/
GLOBAL(void)
jpeg_idct_15x15 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27;
INT32 z1, z2, z3, z4;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[8*15]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array. */
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
/* Even part */
z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
z1 <<= CONST_BITS;
/* Add fudge factor here for final descale. */
z1 += ONE << (CONST_BITS-PASS1_BITS-1);
z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
z4 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
tmp10 = MULTIPLY(z4, FIX(0.437016024)); /* c12 */
tmp11 = MULTIPLY(z4, FIX(1.144122806)); /* c6 */
tmp12 = z1 - tmp10;
tmp13 = z1 + tmp11;
z1 -= (tmp11 - tmp10) << 1; /* c0 = (c6-c12)*2 */
z4 = z2 - z3;
z3 += z2;
tmp10 = MULTIPLY(z3, FIX(1.337628990)); /* (c2+c4)/2 */
tmp11 = MULTIPLY(z4, FIX(0.045680613)); /* (c2-c4)/2 */
z2 = MULTIPLY(z2, FIX(1.439773946)); /* c4+c14 */
tmp20 = tmp13 + tmp10 + tmp11;
tmp23 = tmp12 - tmp10 + tmp11 + z2;
tmp10 = MULTIPLY(z3, FIX(0.547059574)); /* (c8+c14)/2 */
tmp11 = MULTIPLY(z4, FIX(0.399234004)); /* (c8-c14)/2 */
tmp25 = tmp13 - tmp10 - tmp11;
tmp26 = tmp12 + tmp10 - tmp11 - z2;
tmp10 = MULTIPLY(z3, FIX(0.790569415)); /* (c6+c12)/2 */
tmp11 = MULTIPLY(z4, FIX(0.353553391)); /* (c6-c12)/2 */
tmp21 = tmp12 + tmp10 + tmp11;
tmp24 = tmp13 - tmp10 + tmp11;
tmp11 += tmp11;
tmp22 = z1 + tmp11; /* c10 = c6-c12 */
tmp27 = z1 - tmp11 - tmp11; /* c0 = (c6-c12)*2 */
/* Odd part */
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
z4 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
z3 = MULTIPLY(z4, FIX(1.224744871)); /* c5 */
z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
tmp13 = z2 - z4;
tmp15 = MULTIPLY(z1 + tmp13, FIX(0.831253876)); /* c9 */
tmp11 = tmp15 + MULTIPLY(z1, FIX(0.513743148)); /* c3-c9 */
tmp14 = tmp15 - MULTIPLY(tmp13, FIX(2.176250899)); /* c3+c9 */
tmp13 = MULTIPLY(z2, - FIX(0.831253876)); /* -c9 */
tmp15 = MULTIPLY(z2, - FIX(1.344997024)); /* -c3 */
z2 = z1 - z4;
tmp12 = z3 + MULTIPLY(z2, FIX(1.406466353)); /* c1 */
tmp10 = tmp12 + MULTIPLY(z4, FIX(2.457431844)) - tmp15; /* c1+c7 */
tmp16 = tmp12 - MULTIPLY(z1, FIX(1.112434820)) + tmp13; /* c1-c13 */
tmp12 = MULTIPLY(z2, FIX(1.224744871)) - z3; /* c5 */
z2 = MULTIPLY(z1 + z4, FIX(0.575212477)); /* c11 */
tmp13 += z2 + MULTIPLY(z1, FIX(0.475753014)) - z3; /* c7-c11 */
tmp15 += z2 - MULTIPLY(z4, FIX(0.869244010)) + z3; /* c11+c13 */
/* Final output stage */
wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
wsptr[8*14] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
wsptr[8*13] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
wsptr[8*12] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
wsptr[8*11] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
wsptr[8*10] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
wsptr[8*9] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS-PASS1_BITS);
wsptr[8*8] = (int) RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS-PASS1_BITS);
wsptr[8*7] = (int) RIGHT_SHIFT(tmp27, CONST_BITS-PASS1_BITS);
}
/* Pass 2: process 15 rows from work array, store into output array. */
wsptr = workspace;
for (ctr = 0; ctr < 15; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Even part */
/* Add range center and fudge factor for final descale and range-limit. */
z1 = (INT32) wsptr[0] +
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
(ONE << (PASS1_BITS+2)));
z1 <<= CONST_BITS;
z2 = (INT32) wsptr[2];
z3 = (INT32) wsptr[4];
z4 = (INT32) wsptr[6];
tmp10 = MULTIPLY(z4, FIX(0.437016024)); /* c12 */
tmp11 = MULTIPLY(z4, FIX(1.144122806)); /* c6 */
tmp12 = z1 - tmp10;
tmp13 = z1 + tmp11;
z1 -= (tmp11 - tmp10) << 1; /* c0 = (c6-c12)*2 */
z4 = z2 - z3;
z3 += z2;
tmp10 = MULTIPLY(z3, FIX(1.337628990)); /* (c2+c4)/2 */
tmp11 = MULTIPLY(z4, FIX(0.045680613)); /* (c2-c4)/2 */
z2 = MULTIPLY(z2, FIX(1.439773946)); /* c4+c14 */
tmp20 = tmp13 + tmp10 + tmp11;
tmp23 = tmp12 - tmp10 + tmp11 + z2;
tmp10 = MULTIPLY(z3, FIX(0.547059574)); /* (c8+c14)/2 */
tmp11 = MULTIPLY(z4, FIX(0.399234004)); /* (c8-c14)/2 */
tmp25 = tmp13 - tmp10 - tmp11;
tmp26 = tmp12 + tmp10 - tmp11 - z2;
tmp10 = MULTIPLY(z3, FIX(0.790569415)); /* (c6+c12)/2 */
tmp11 = MULTIPLY(z4, FIX(0.353553391)); /* (c6-c12)/2 */
tmp21 = tmp12 + tmp10 + tmp11;
tmp24 = tmp13 - tmp10 + tmp11;
tmp11 += tmp11;
tmp22 = z1 + tmp11; /* c10 = c6-c12 */
tmp27 = z1 - tmp11 - tmp11; /* c0 = (c6-c12)*2 */
/* Odd part */
z1 = (INT32) wsptr[1];
z2 = (INT32) wsptr[3];
z4 = (INT32) wsptr[5];
z3 = MULTIPLY(z4, FIX(1.224744871)); /* c5 */
z4 = (INT32) wsptr[7];
tmp13 = z2 - z4;
tmp15 = MULTIPLY(z1 + tmp13, FIX(0.831253876)); /* c9 */
tmp11 = tmp15 + MULTIPLY(z1, FIX(0.513743148)); /* c3-c9 */
tmp14 = tmp15 - MULTIPLY(tmp13, FIX(2.176250899)); /* c3+c9 */
tmp13 = MULTIPLY(z2, - FIX(0.831253876)); /* -c9 */
tmp15 = MULTIPLY(z2, - FIX(1.344997024)); /* -c3 */
z2 = z1 - z4;
tmp12 = z3 + MULTIPLY(z2, FIX(1.406466353)); /* c1 */
tmp10 = tmp12 + MULTIPLY(z4, FIX(2.457431844)) - tmp15; /* c1+c7 */
tmp16 = tmp12 - MULTIPLY(z1, FIX(1.112434820)) + tmp13; /* c1-c13 */
tmp12 = MULTIPLY(z2, FIX(1.224744871)) - z3; /* c5 */
z2 = MULTIPLY(z1 + z4, FIX(0.575212477)); /* c11 */
tmp13 += z2 + MULTIPLY(z1, FIX(0.475753014)) - z3; /* c7-c11 */
tmp15 += z2 - MULTIPLY(z4, FIX(0.869244010)) + z3; /* c11+c13 */
/* Final output stage */
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[14] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp16,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp16,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp27,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
wsptr += 8; /* advance pointer to next row */
}
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a 16x16 output block.
*
* Optimized algorithm with 28 multiplications in the 1-D kernel.
* cK represents sqrt(2) * cos(K*pi/32).
*/
GLOBAL(void)
jpeg_idct_16x16 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13;
INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27;
INT32 z1, z2, z3, z4;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[8*16]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array. */
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
/* Even part */
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
tmp0 <<= CONST_BITS;
/* Add fudge factor here for final descale. */
tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
z1 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */
tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */
tmp10 = tmp0 + tmp1;
tmp11 = tmp0 - tmp1;
tmp12 = tmp0 + tmp2;
tmp13 = tmp0 - tmp2;
z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
z3 = z1 - z2;
z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */
z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */
tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */
tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */
tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */
tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */
tmp20 = tmp10 + tmp0;
tmp27 = tmp10 - tmp0;
tmp21 = tmp12 + tmp1;
tmp26 = tmp12 - tmp1;
tmp22 = tmp13 + tmp2;
tmp25 = tmp13 - tmp2;
tmp23 = tmp11 + tmp3;
tmp24 = tmp11 - tmp3;
/* Odd part */
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
tmp11 = z1 + z3;
tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */
tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */
tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */
tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */
tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */
tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */
tmp0 = tmp1 + tmp2 + tmp3 -
MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */
tmp13 = tmp10 + tmp11 + tmp12 -
MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */
z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */
tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */
tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */
z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */
tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */
tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */
z2 += z4;
z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */
tmp1 += z1;
tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */
z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */
tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */
tmp12 += z2;
z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */
tmp2 += z2;
tmp3 += z2;
z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */
tmp10 += z2;
tmp11 += z2;
/* Final output stage */
wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp0, CONST_BITS-PASS1_BITS);
wsptr[8*15] = (int) RIGHT_SHIFT(tmp20 - tmp0, CONST_BITS-PASS1_BITS);
wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp1, CONST_BITS-PASS1_BITS);
wsptr[8*14] = (int) RIGHT_SHIFT(tmp21 - tmp1, CONST_BITS-PASS1_BITS);
wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp2, CONST_BITS-PASS1_BITS);
wsptr[8*13] = (int) RIGHT_SHIFT(tmp22 - tmp2, CONST_BITS-PASS1_BITS);
wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp3, CONST_BITS-PASS1_BITS);
wsptr[8*12] = (int) RIGHT_SHIFT(tmp23 - tmp3, CONST_BITS-PASS1_BITS);
wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp10, CONST_BITS-PASS1_BITS);
wsptr[8*11] = (int) RIGHT_SHIFT(tmp24 - tmp10, CONST_BITS-PASS1_BITS);
wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp11, CONST_BITS-PASS1_BITS);
wsptr[8*10] = (int) RIGHT_SHIFT(tmp25 - tmp11, CONST_BITS-PASS1_BITS);
wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp12, CONST_BITS-PASS1_BITS);
wsptr[8*9] = (int) RIGHT_SHIFT(tmp26 - tmp12, CONST_BITS-PASS1_BITS);
wsptr[8*7] = (int) RIGHT_SHIFT(tmp27 + tmp13, CONST_BITS-PASS1_BITS);
wsptr[8*8] = (int) RIGHT_SHIFT(tmp27 - tmp13, CONST_BITS-PASS1_BITS);
}
/* Pass 2: process 16 rows from work array, store into output array. */
wsptr = workspace;
for (ctr = 0; ctr < 16; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Even part */
/* Add range center and fudge factor for final descale and range-limit. */
tmp0 = (INT32) wsptr[0] +
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
(ONE << (PASS1_BITS+2)));
tmp0 <<= CONST_BITS;
z1 = (INT32) wsptr[4];
tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */
tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */
tmp10 = tmp0 + tmp1;
tmp11 = tmp0 - tmp1;
tmp12 = tmp0 + tmp2;
tmp13 = tmp0 - tmp2;
z1 = (INT32) wsptr[2];
z2 = (INT32) wsptr[6];
z3 = z1 - z2;
z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */
z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */
tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */
tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */
tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */
tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */
tmp20 = tmp10 + tmp0;
tmp27 = tmp10 - tmp0;
tmp21 = tmp12 + tmp1;
tmp26 = tmp12 - tmp1;
tmp22 = tmp13 + tmp2;
tmp25 = tmp13 - tmp2;
tmp23 = tmp11 + tmp3;
tmp24 = tmp11 - tmp3;
/* Odd part */
z1 = (INT32) wsptr[1];
z2 = (INT32) wsptr[3];
z3 = (INT32) wsptr[5];
z4 = (INT32) wsptr[7];
tmp11 = z1 + z3;
tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */
tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */
tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */
tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */
tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */
tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */
tmp0 = tmp1 + tmp2 + tmp3 -
MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */
tmp13 = tmp10 + tmp11 + tmp12 -
MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */
z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */
tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */
tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */
z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */
tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */
tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */
z2 += z4;
z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */
tmp1 += z1;
tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */
z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */
tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */
tmp12 += z2;
z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */
tmp2 += z2;
tmp3 += z2;
z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */
tmp10 += z2;
tmp11 += z2;
/* Final output stage */
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[15] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp1,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[14] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp1,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp2,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp2,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp3,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp3,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp10,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp10,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp11,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp11,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp12,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp12,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp27 + tmp13,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp27 - tmp13,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
wsptr += 8; /* advance pointer to next row */
}
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a 16x8 output block.
*
* 8-point IDCT in pass 1 (columns), 16-point in pass 2 (rows).
*/
GLOBAL(void)
jpeg_idct_16x8 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13;
INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27;
INT32 z1, z2, z3, z4;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[8*8]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array.
* Note results are scaled up by sqrt(8) compared to a true IDCT;
* furthermore, we scale the results by 2**PASS1_BITS.
* 8-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
*/
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = DCTSIZE; ctr > 0; ctr--) {
/* Due to quantization, we will usually find that many of the input
* coefficients are zero, especially the AC terms. We can exploit this
* by short-circuiting the IDCT calculation for any column in which all
* the AC terms are zero. In that case each output is equal to the
* DC coefficient (with scale factor as needed).
* With typical images and quantization tables, half or more of the
* column DCT calculations can be simplified this way.
*/
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
inptr[DCTSIZE*7] == 0) {
/* AC terms all zero */
int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
wsptr[DCTSIZE*0] = dcval;
wsptr[DCTSIZE*1] = dcval;
wsptr[DCTSIZE*2] = dcval;
wsptr[DCTSIZE*3] = dcval;
wsptr[DCTSIZE*4] = dcval;
wsptr[DCTSIZE*5] = dcval;
wsptr[DCTSIZE*6] = dcval;
wsptr[DCTSIZE*7] = dcval;
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
continue;
}
/* Even part: reverse the even part of the forward DCT.
* The rotator is c(-6).
*/
z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
z2 <<= CONST_BITS;
z3 <<= CONST_BITS;
/* Add fudge factor here for final descale. */
z2 += ONE << (CONST_BITS-PASS1_BITS-1);
tmp0 = z2 + z3;
tmp1 = z2 - z3;
z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
tmp10 = tmp0 + tmp2;
tmp13 = tmp0 - tmp2;
tmp11 = tmp1 + tmp3;
tmp12 = tmp1 - tmp3;
/* Odd part per figure 8; the matrix is unitary and hence its
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
*/
tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
z2 = tmp0 + tmp2;
z3 = tmp1 + tmp3;
z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* c3 */
z2 = MULTIPLY(z2, - FIX_1_961570560); /* -c3-c5 */
z3 = MULTIPLY(z3, - FIX_0_390180644); /* -c3+c5 */
z2 += z1;
z3 += z1;
z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* -c1+c3+c5-c7 */
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* c1+c3-c5-c7 */
tmp0 += z1 + z2;
tmp3 += z1 + z3;
z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* c1+c3-c5+c7 */
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* c1+c3+c5-c7 */
tmp1 += z1 + z3;
tmp2 += z1 + z2;
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
wsptr[DCTSIZE*0] = (int) RIGHT_SHIFT(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*7] = (int) RIGHT_SHIFT(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*1] = (int) RIGHT_SHIFT(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*6] = (int) RIGHT_SHIFT(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*2] = (int) RIGHT_SHIFT(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*5] = (int) RIGHT_SHIFT(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*3] = (int) RIGHT_SHIFT(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*4] = (int) RIGHT_SHIFT(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
}
/* Pass 2: process 8 rows from work array, store into output array.
* 16-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/32).
*/
wsptr = workspace;
for (ctr = 0; ctr < 8; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Even part */
/* Add range center and fudge factor for final descale and range-limit. */
tmp0 = (INT32) wsptr[0] +
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
(ONE << (PASS1_BITS+2)));
tmp0 <<= CONST_BITS;
z1 = (INT32) wsptr[4];
tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */
tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */
tmp10 = tmp0 + tmp1;
tmp11 = tmp0 - tmp1;
tmp12 = tmp0 + tmp2;
tmp13 = tmp0 - tmp2;
z1 = (INT32) wsptr[2];
z2 = (INT32) wsptr[6];
z3 = z1 - z2;
z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */
z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */
tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */
tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */
tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */
tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */
tmp20 = tmp10 + tmp0;
tmp27 = tmp10 - tmp0;
tmp21 = tmp12 + tmp1;
tmp26 = tmp12 - tmp1;
tmp22 = tmp13 + tmp2;
tmp25 = tmp13 - tmp2;
tmp23 = tmp11 + tmp3;
tmp24 = tmp11 - tmp3;
/* Odd part */
z1 = (INT32) wsptr[1];
z2 = (INT32) wsptr[3];
z3 = (INT32) wsptr[5];
z4 = (INT32) wsptr[7];
tmp11 = z1 + z3;
tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */
tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */
tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */
tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */
tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */
tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */
tmp0 = tmp1 + tmp2 + tmp3 -
MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */
tmp13 = tmp10 + tmp11 + tmp12 -
MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */
z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */
tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */
tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */
z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */
tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */
tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */
z2 += z4;
z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */
tmp1 += z1;
tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */
z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */
tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */
tmp12 += z2;
z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */
tmp2 += z2;
tmp3 += z2;
z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */
tmp10 += z2;
tmp11 += z2;
/* Final output stage */
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[15] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp1,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[14] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp1,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp2,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp2,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp3,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp3,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp10,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp10,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp11,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp11,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp12,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp12,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp27 + tmp13,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp27 - tmp13,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
wsptr += 8; /* advance pointer to next row */
}
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a 14x7 output block.
*
* 7-point IDCT in pass 1 (columns), 14-point in pass 2 (rows).
*/
GLOBAL(void)
jpeg_idct_14x7 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26;
INT32 z1, z2, z3, z4;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[8*7]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array.
* 7-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/14).
*/
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
/* Even part */
tmp23 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
tmp23 <<= CONST_BITS;
/* Add fudge factor here for final descale. */
tmp23 += ONE << (CONST_BITS-PASS1_BITS-1);
z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
tmp20 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */
tmp22 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */
tmp21 = tmp20 + tmp22 + tmp23 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */
tmp10 = z1 + z3;
z2 -= tmp10;
tmp10 = MULTIPLY(tmp10, FIX(1.274162392)) + tmp23; /* c2 */
tmp20 += tmp10 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */
tmp22 += tmp10 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */
tmp23 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */
/* Odd part */
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
tmp11 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */
tmp12 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */
tmp10 = tmp11 - tmp12;
tmp11 += tmp12;
tmp12 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */
tmp11 += tmp12;
z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */
tmp10 += z2;
tmp12 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */
/* Final output stage */
wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
wsptr[8*6] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
wsptr[8*5] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
wsptr[8*4] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
wsptr[8*3] = (int) RIGHT_SHIFT(tmp23, CONST_BITS-PASS1_BITS);
}
/* Pass 2: process 7 rows from work array, store into output array.
* 14-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/28).
*/
wsptr = workspace;
for (ctr = 0; ctr < 7; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Even part */
/* Add range center and fudge factor for final descale and range-limit. */
z1 = (INT32) wsptr[0] +
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
(ONE << (PASS1_BITS+2)));
z1 <<= CONST_BITS;
z4 = (INT32) wsptr[4];
z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */
z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */
z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */
tmp10 = z1 + z2;
tmp11 = z1 + z3;
tmp12 = z1 - z4;
tmp23 = z1 - ((z2 + z3 - z4) << 1); /* c0 = (c4+c12-c8)*2 */
z1 = (INT32) wsptr[2];
z2 = (INT32) wsptr[6];
z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */
tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */
tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */
tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */
MULTIPLY(z2, FIX(1.378756276)); /* c2 */
tmp20 = tmp10 + tmp13;
tmp26 = tmp10 - tmp13;
tmp21 = tmp11 + tmp14;
tmp25 = tmp11 - tmp14;
tmp22 = tmp12 + tmp15;
tmp24 = tmp12 - tmp15;
/* Odd part */
z1 = (INT32) wsptr[1];
z2 = (INT32) wsptr[3];
z3 = (INT32) wsptr[5];
z4 = (INT32) wsptr[7];
z4 <<= CONST_BITS;
tmp14 = z1 + z3;
tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */
tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */
tmp10 = tmp11 + tmp12 + z4 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */
tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */
tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */
z1 -= z2;
tmp15 = MULTIPLY(z1, FIX(0.467085129)) - z4; /* c11 */
tmp16 += tmp15;
tmp13 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - z4; /* -c13 */
tmp11 += tmp13 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */
tmp12 += tmp13 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */
tmp13 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */
tmp14 += tmp13 + z4 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */
tmp15 += tmp13 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */
tmp13 = ((z1 - z3) << CONST_BITS) + z4;
/* Final output stage */
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp16,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp16,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
wsptr += 8; /* advance pointer to next row */
}
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a 12x6 output block.
*
* 6-point IDCT in pass 1 (columns), 12-point in pass 2 (rows).
*/
GLOBAL(void)
jpeg_idct_12x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25;
INT32 z1, z2, z3, z4;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[8*6]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array.
* 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12).
*/
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
/* Even part */
tmp10 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
tmp10 <<= CONST_BITS;
/* Add fudge factor here for final descale. */
tmp10 += ONE << (CONST_BITS-PASS1_BITS-1);
tmp12 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
tmp20 = MULTIPLY(tmp12, FIX(0.707106781)); /* c4 */
tmp11 = tmp10 + tmp20;
tmp21 = RIGHT_SHIFT(tmp10 - tmp20 - tmp20, CONST_BITS-PASS1_BITS);
tmp20 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
tmp10 = MULTIPLY(tmp20, FIX(1.224744871)); /* c2 */
tmp20 = tmp11 + tmp10;
tmp22 = tmp11 - tmp10;
/* Odd part */
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
tmp11 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
tmp10 = tmp11 + ((z1 + z2) << CONST_BITS);
tmp12 = tmp11 + ((z3 - z2) << CONST_BITS);
tmp11 = (z1 - z2 - z3) << PASS1_BITS;
/* Final output stage */
wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
wsptr[8*5] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
wsptr[8*1] = (int) (tmp21 + tmp11);
wsptr[8*4] = (int) (tmp21 - tmp11);
wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
wsptr[8*3] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
}
/* Pass 2: process 6 rows from work array, store into output array.
* 12-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/24).
*/
wsptr = workspace;
for (ctr = 0; ctr < 6; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Even part */
/* Add range center and fudge factor for final descale and range-limit. */
z3 = (INT32) wsptr[0] +
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
(ONE << (PASS1_BITS+2)));
z3 <<= CONST_BITS;
z4 = (INT32) wsptr[4];
z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */
tmp10 = z3 + z4;
tmp11 = z3 - z4;
z1 = (INT32) wsptr[2];
z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */
z1 <<= CONST_BITS;
z2 = (INT32) wsptr[6];
z2 <<= CONST_BITS;
tmp12 = z1 - z2;
tmp21 = z3 + tmp12;
tmp24 = z3 - tmp12;
tmp12 = z4 + z2;
tmp20 = tmp10 + tmp12;
tmp25 = tmp10 - tmp12;
tmp12 = z4 - z1 - z2;
tmp22 = tmp11 + tmp12;
tmp23 = tmp11 - tmp12;
/* Odd part */
z1 = (INT32) wsptr[1];
z2 = (INT32) wsptr[3];
z3 = (INT32) wsptr[5];
z4 = (INT32) wsptr[7];
tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */
tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */
tmp10 = z1 + z3;
tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */
tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */
tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */
tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */
tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */
tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */
tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */
MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */
z1 -= z4;
z2 -= z3;
z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */
tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */
tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */
/* Final output stage */
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
wsptr += 8; /* advance pointer to next row */
}
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a 10x5 output block.
*
* 5-point IDCT in pass 1 (columns), 10-point in pass 2 (rows).
*/
GLOBAL(void)
jpeg_idct_10x5 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
INT32 tmp20, tmp21, tmp22, tmp23, tmp24;
INT32 z1, z2, z3, z4;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[8*5]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array.
* 5-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/10).
*/
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
/* Even part */
tmp12 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
tmp12 <<= CONST_BITS;
/* Add fudge factor here for final descale. */
tmp12 += ONE << (CONST_BITS-PASS1_BITS-1);
tmp13 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
tmp14 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
z1 = MULTIPLY(tmp13 + tmp14, FIX(0.790569415)); /* (c2+c4)/2 */
z2 = MULTIPLY(tmp13 - tmp14, FIX(0.353553391)); /* (c2-c4)/2 */
z3 = tmp12 + z2;
tmp10 = z3 + z1;
tmp11 = z3 - z1;
tmp12 -= z2 << 2;
/* Odd part */
z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */
tmp13 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */
tmp14 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */
/* Final output stage */
wsptr[8*0] = (int) RIGHT_SHIFT(tmp10 + tmp13, CONST_BITS-PASS1_BITS);
wsptr[8*4] = (int) RIGHT_SHIFT(tmp10 - tmp13, CONST_BITS-PASS1_BITS);
wsptr[8*1] = (int) RIGHT_SHIFT(tmp11 + tmp14, CONST_BITS-PASS1_BITS);
wsptr[8*3] = (int) RIGHT_SHIFT(tmp11 - tmp14, CONST_BITS-PASS1_BITS);
wsptr[8*2] = (int) RIGHT_SHIFT(tmp12, CONST_BITS-PASS1_BITS);
}
/* Pass 2: process 5 rows from work array, store into output array.
* 10-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/20).
*/
wsptr = workspace;
for (ctr = 0; ctr < 5; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Even part */
/* Add range center and fudge factor for final descale and range-limit. */
z3 = (INT32) wsptr[0] +
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
(ONE << (PASS1_BITS+2)));
z3 <<= CONST_BITS;
z4 = (INT32) wsptr[4];
z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */
z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */
tmp10 = z3 + z1;
tmp11 = z3 - z2;
tmp22 = z3 - ((z1 - z2) << 1); /* c0 = (c4-c8)*2 */
z2 = (INT32) wsptr[2];
z3 = (INT32) wsptr[6];
z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */
tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */
tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */
tmp20 = tmp10 + tmp12;
tmp24 = tmp10 - tmp12;
tmp21 = tmp11 + tmp13;
tmp23 = tmp11 - tmp13;
/* Odd part */
z1 = (INT32) wsptr[1];
z2 = (INT32) wsptr[3];
z3 = (INT32) wsptr[5];
z3 <<= CONST_BITS;
z4 = (INT32) wsptr[7];
tmp11 = z2 + z4;
tmp13 = z2 - z4;
tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */
z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */
z4 = z3 + tmp12;
tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */
tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */
z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */
z4 = z3 - tmp12 - (tmp13 << (CONST_BITS - 1));
tmp12 = ((z1 - tmp13) << CONST_BITS) - z3;
tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */
tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */
/* Final output stage */
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
wsptr += 8; /* advance pointer to next row */
}
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing an 8x4 output block.
*
* 4-point IDCT in pass 1 (columns), 8-point in pass 2 (rows).
*/
GLOBAL(void)
jpeg_idct_8x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp0, tmp1, tmp2, tmp3;
INT32 tmp10, tmp11, tmp12, tmp13;
INT32 z1, z2, z3;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[8*4]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array.
* 4-point IDCT kernel,
* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point IDCT].
*/
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
/* Even part */
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
tmp10 = (tmp0 + tmp2) << PASS1_BITS;
tmp12 = (tmp0 - tmp2) << PASS1_BITS;
/* Odd part */
/* Same rotation as in the even part of the 8x8 LL&M IDCT */
z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
/* Add fudge factor here for final descale. */
z1 += ONE << (CONST_BITS-PASS1_BITS-1);
tmp0 = RIGHT_SHIFT(z1 + MULTIPLY(z2, FIX_0_765366865), /* c2-c6 */
CONST_BITS-PASS1_BITS);
tmp2 = RIGHT_SHIFT(z1 - MULTIPLY(z3, FIX_1_847759065), /* c2+c6 */
CONST_BITS-PASS1_BITS);
/* Final output stage */
wsptr[8*0] = (int) (tmp10 + tmp0);
wsptr[8*3] = (int) (tmp10 - tmp0);
wsptr[8*1] = (int) (tmp12 + tmp2);
wsptr[8*2] = (int) (tmp12 - tmp2);
}
/* Pass 2: process rows from work array, store into output array.
* Note that we must descale the results by a factor of 8 == 2**3,
* and also undo the PASS1_BITS scaling.
* 8-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
*/
wsptr = workspace;
for (ctr = 0; ctr < 4; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Even part: reverse the even part of the forward DCT.
* The rotator is c(-6).
*/
/* Add range center and fudge factor for final descale and range-limit. */
z2 = (INT32) wsptr[0] +
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
(ONE << (PASS1_BITS+2)));
z3 = (INT32) wsptr[4];
tmp0 = (z2 + z3) << CONST_BITS;
tmp1 = (z2 - z3) << CONST_BITS;
z2 = (INT32) wsptr[2];
z3 = (INT32) wsptr[6];
z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
tmp10 = tmp0 + tmp2;
tmp13 = tmp0 - tmp2;
tmp11 = tmp1 + tmp3;
tmp12 = tmp1 - tmp3;
/* Odd part per figure 8; the matrix is unitary and hence its
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
*/
tmp0 = (INT32) wsptr[7];
tmp1 = (INT32) wsptr[5];
tmp2 = (INT32) wsptr[3];
tmp3 = (INT32) wsptr[1];
z2 = tmp0 + tmp2;
z3 = tmp1 + tmp3;
z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* c3 */
z2 = MULTIPLY(z2, - FIX_1_961570560); /* -c3-c5 */
z3 = MULTIPLY(z3, - FIX_0_390180644); /* -c3+c5 */
z2 += z1;
z3 += z1;
z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* -c1+c3+c5-c7 */
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* c1+c3-c5-c7 */
tmp0 += z1 + z2;
tmp3 += z1 + z3;
z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* c1+c3-c5+c7 */
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* c1+c3+c5-c7 */
tmp1 += z1 + z3;
tmp2 += z1 + z2;
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp3,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp3,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp2,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp2,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp1,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp1,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13 + tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp13 - tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
wsptr += DCTSIZE; /* advance pointer to next row */
}
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a 6x3 output block.
*
* 3-point IDCT in pass 1 (columns), 6-point in pass 2 (rows).
*/
GLOBAL(void)
jpeg_idct_6x3 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12;
INT32 z1, z2, z3;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[6*3]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array.
* 3-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/6).
*/
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = 0; ctr < 6; ctr++, inptr++, quantptr++, wsptr++) {
/* Even part */
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
tmp0 <<= CONST_BITS;
/* Add fudge factor here for final descale. */
tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */
tmp10 = tmp0 + tmp12;
tmp2 = tmp0 - tmp12 - tmp12;
/* Odd part */
tmp12 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */
/* Final output stage */
wsptr[6*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
wsptr[6*2] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
wsptr[6*1] = (int) RIGHT_SHIFT(tmp2, CONST_BITS-PASS1_BITS);
}
/* Pass 2: process 3 rows from work array, store into output array.
* 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12).
*/
wsptr = workspace;
for (ctr = 0; ctr < 3; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Even part */
/* Add range center and fudge factor for final descale and range-limit. */
tmp0 = (INT32) wsptr[0] +
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
(ONE << (PASS1_BITS+2)));
tmp0 <<= CONST_BITS;
tmp2 = (INT32) wsptr[4];
tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */
tmp1 = tmp0 + tmp10;
tmp11 = tmp0 - tmp10 - tmp10;
tmp10 = (INT32) wsptr[2];
tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */
tmp10 = tmp1 + tmp0;
tmp12 = tmp1 - tmp0;
/* Odd part */
z1 = (INT32) wsptr[1];
z2 = (INT32) wsptr[3];
z3 = (INT32) wsptr[5];
tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
tmp0 = tmp1 + ((z1 + z2) << CONST_BITS);
tmp2 = tmp1 + ((z3 - z2) << CONST_BITS);
tmp1 = (z1 - z2 - z3) << CONST_BITS;
/* Final output stage */
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
wsptr += 6; /* advance pointer to next row */
}
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a 4x2 output block.
*
* 2-point IDCT in pass 1 (columns), 4-point in pass 2 (rows).
*/
GLOBAL(void)
jpeg_idct_4x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp0, tmp2, tmp10, tmp12;
INT32 z1, z2, z3;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
INT32 * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
INT32 workspace[4*2]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array. */
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = 0; ctr < 4; ctr++, inptr++, quantptr++, wsptr++) {
/* Even part */
tmp10 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
/* Odd part */
tmp0 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
/* Final output stage */
wsptr[4*0] = tmp10 + tmp0;
wsptr[4*1] = tmp10 - tmp0;
}
/* Pass 2: process 2 rows from work array, store into output array.
* 4-point IDCT kernel,
* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point IDCT].
*/
wsptr = workspace;
for (ctr = 0; ctr < 2; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Even part */
/* Add range center and fudge factor for final descale and range-limit. */
tmp0 = wsptr[0] + ((((INT32) RANGE_CENTER) << 3) + (ONE << 2));
tmp2 = wsptr[2];
tmp10 = (tmp0 + tmp2) << CONST_BITS;
tmp12 = (tmp0 - tmp2) << CONST_BITS;
/* Odd part */
/* Same rotation as in the even part of the 8x8 LL&M IDCT */
z2 = wsptr[1];
z3 = wsptr[3];
z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
tmp0 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
tmp2 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
/* Final output stage */
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
CONST_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
CONST_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
CONST_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
CONST_BITS+3)
& RANGE_MASK];
wsptr += 4; /* advance pointer to next row */
}
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a 2x1 output block.
*
* 1-point IDCT in pass 1 (columns), 2-point in pass 2 (rows).
*/
GLOBAL(void)
jpeg_idct_2x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
DCTELEM tmp0, tmp1;
ISLOW_MULT_TYPE * quantptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
ISHIFT_TEMPS
/* Pass 1: empty. */
/* Pass 2: process 1 row from input, store into output array. */
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
outptr = output_buf[0] + output_col;
/* Even part */
tmp0 = DEQUANTIZE(coef_block[0], quantptr[0]);
/* Add range center and fudge factor for final descale and range-limit. */
tmp0 += (((DCTELEM) RANGE_CENTER) << 3) + (1 << 2);
/* Odd part */
tmp1 = DEQUANTIZE(coef_block[1], quantptr[1]);
/* Final output stage */
outptr[0] = range_limit[(int) IRIGHT_SHIFT(tmp0 + tmp1, 3) & RANGE_MASK];
outptr[1] = range_limit[(int) IRIGHT_SHIFT(tmp0 - tmp1, 3) & RANGE_MASK];
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing an 8x16 output block.
*
* 16-point IDCT in pass 1 (columns), 8-point in pass 2 (rows).
*/
GLOBAL(void)
jpeg_idct_8x16 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13;
INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27;
INT32 z1, z2, z3, z4;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[8*16]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array.
* 16-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/32).
*/
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
/* Even part */
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
tmp0 <<= CONST_BITS;
/* Add fudge factor here for final descale. */
tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
z1 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */
tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */
tmp10 = tmp0 + tmp1;
tmp11 = tmp0 - tmp1;
tmp12 = tmp0 + tmp2;
tmp13 = tmp0 - tmp2;
z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
z3 = z1 - z2;
z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */
z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */
tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */
tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */
tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */
tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */
tmp20 = tmp10 + tmp0;
tmp27 = tmp10 - tmp0;
tmp21 = tmp12 + tmp1;
tmp26 = tmp12 - tmp1;
tmp22 = tmp13 + tmp2;
tmp25 = tmp13 - tmp2;
tmp23 = tmp11 + tmp3;
tmp24 = tmp11 - tmp3;
/* Odd part */
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
tmp11 = z1 + z3;
tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */
tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */
tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */
tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */
tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */
tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */
tmp0 = tmp1 + tmp2 + tmp3 -
MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */
tmp13 = tmp10 + tmp11 + tmp12 -
MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */
z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */
tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */
tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */
z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */
tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */
tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */
z2 += z4;
z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */
tmp1 += z1;
tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */
z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */
tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */
tmp12 += z2;
z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */
tmp2 += z2;
tmp3 += z2;
z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */
tmp10 += z2;
tmp11 += z2;
/* Final output stage */
wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp0, CONST_BITS-PASS1_BITS);
wsptr[8*15] = (int) RIGHT_SHIFT(tmp20 - tmp0, CONST_BITS-PASS1_BITS);
wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp1, CONST_BITS-PASS1_BITS);
wsptr[8*14] = (int) RIGHT_SHIFT(tmp21 - tmp1, CONST_BITS-PASS1_BITS);
wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp2, CONST_BITS-PASS1_BITS);
wsptr[8*13] = (int) RIGHT_SHIFT(tmp22 - tmp2, CONST_BITS-PASS1_BITS);
wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp3, CONST_BITS-PASS1_BITS);
wsptr[8*12] = (int) RIGHT_SHIFT(tmp23 - tmp3, CONST_BITS-PASS1_BITS);
wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp10, CONST_BITS-PASS1_BITS);
wsptr[8*11] = (int) RIGHT_SHIFT(tmp24 - tmp10, CONST_BITS-PASS1_BITS);
wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp11, CONST_BITS-PASS1_BITS);
wsptr[8*10] = (int) RIGHT_SHIFT(tmp25 - tmp11, CONST_BITS-PASS1_BITS);
wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp12, CONST_BITS-PASS1_BITS);
wsptr[8*9] = (int) RIGHT_SHIFT(tmp26 - tmp12, CONST_BITS-PASS1_BITS);
wsptr[8*7] = (int) RIGHT_SHIFT(tmp27 + tmp13, CONST_BITS-PASS1_BITS);
wsptr[8*8] = (int) RIGHT_SHIFT(tmp27 - tmp13, CONST_BITS-PASS1_BITS);
}
/* Pass 2: process rows from work array, store into output array.
* Note that we must descale the results by a factor of 8 == 2**3,
* and also undo the PASS1_BITS scaling.
* 8-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
*/
wsptr = workspace;
for (ctr = 0; ctr < 16; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Even part: reverse the even part of the forward DCT.
* The rotator is c(-6).
*/
/* Add range center and fudge factor for final descale and range-limit. */
z2 = (INT32) wsptr[0] +
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
(ONE << (PASS1_BITS+2)));
z3 = (INT32) wsptr[4];
tmp0 = (z2 + z3) << CONST_BITS;
tmp1 = (z2 - z3) << CONST_BITS;
z2 = (INT32) wsptr[2];
z3 = (INT32) wsptr[6];
z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
tmp10 = tmp0 + tmp2;
tmp13 = tmp0 - tmp2;
tmp11 = tmp1 + tmp3;
tmp12 = tmp1 - tmp3;
/* Odd part per figure 8; the matrix is unitary and hence its
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
*/
tmp0 = (INT32) wsptr[7];
tmp1 = (INT32) wsptr[5];
tmp2 = (INT32) wsptr[3];
tmp3 = (INT32) wsptr[1];
z2 = tmp0 + tmp2;
z3 = tmp1 + tmp3;
z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* c3 */
z2 = MULTIPLY(z2, - FIX_1_961570560); /* -c3-c5 */
z3 = MULTIPLY(z3, - FIX_0_390180644); /* -c3+c5 */
z2 += z1;
z3 += z1;
z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* -c1+c3+c5-c7 */
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* c1+c3-c5-c7 */
tmp0 += z1 + z2;
tmp3 += z1 + z3;
z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* c1+c3-c5+c7 */
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* c1+c3+c5-c7 */
tmp1 += z1 + z3;
tmp2 += z1 + z2;
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp3,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp3,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp2,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp2,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp1,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp1,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13 + tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp13 - tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
wsptr += DCTSIZE; /* advance pointer to next row */
}
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a 7x14 output block.
*
* 14-point IDCT in pass 1 (columns), 7-point in pass 2 (rows).
*/
GLOBAL(void)
jpeg_idct_7x14 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26;
INT32 z1, z2, z3, z4;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[7*14]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array.
* 14-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/28).
*/
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = 0; ctr < 7; ctr++, inptr++, quantptr++, wsptr++) {
/* Even part */
z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
z1 <<= CONST_BITS;
/* Add fudge factor here for final descale. */
z1 += ONE << (CONST_BITS-PASS1_BITS-1);
z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */
z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */
z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */
tmp10 = z1 + z2;
tmp11 = z1 + z3;
tmp12 = z1 - z4;
tmp23 = RIGHT_SHIFT(z1 - ((z2 + z3 - z4) << 1), /* c0 = (c4+c12-c8)*2 */
CONST_BITS-PASS1_BITS);
z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */
tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */
tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */
tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */
MULTIPLY(z2, FIX(1.378756276)); /* c2 */
tmp20 = tmp10 + tmp13;
tmp26 = tmp10 - tmp13;
tmp21 = tmp11 + tmp14;
tmp25 = tmp11 - tmp14;
tmp22 = tmp12 + tmp15;
tmp24 = tmp12 - tmp15;
/* Odd part */
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
tmp13 = z4 << CONST_BITS;
tmp14 = z1 + z3;
tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */
tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */
tmp10 = tmp11 + tmp12 + tmp13 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */
tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */
tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */
z1 -= z2;
tmp15 = MULTIPLY(z1, FIX(0.467085129)) - tmp13; /* c11 */
tmp16 += tmp15;
z1 += z4;
z4 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - tmp13; /* -c13 */
tmp11 += z4 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */
tmp12 += z4 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */
z4 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */
tmp14 += z4 + tmp13 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */
tmp15 += z4 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */
tmp13 = (z1 - z3) << PASS1_BITS;
/* Final output stage */
wsptr[7*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
wsptr[7*13] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
wsptr[7*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
wsptr[7*12] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
wsptr[7*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
wsptr[7*11] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
wsptr[7*3] = (int) (tmp23 + tmp13);
wsptr[7*10] = (int) (tmp23 - tmp13);
wsptr[7*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
wsptr[7*9] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
wsptr[7*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
wsptr[7*8] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
wsptr[7*6] = (int) RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS-PASS1_BITS);
wsptr[7*7] = (int) RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS-PASS1_BITS);
}
/* Pass 2: process 14 rows from work array, store into output array.
* 7-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/14).
*/
wsptr = workspace;
for (ctr = 0; ctr < 14; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Even part */
/* Add range center and fudge factor for final descale and range-limit. */
tmp23 = (INT32) wsptr[0] +
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
(ONE << (PASS1_BITS+2)));
tmp23 <<= CONST_BITS;
z1 = (INT32) wsptr[2];
z2 = (INT32) wsptr[4];
z3 = (INT32) wsptr[6];
tmp20 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */
tmp22 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */
tmp21 = tmp20 + tmp22 + tmp23 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */
tmp10 = z1 + z3;
z2 -= tmp10;
tmp10 = MULTIPLY(tmp10, FIX(1.274162392)) + tmp23; /* c2 */
tmp20 += tmp10 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */
tmp22 += tmp10 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */
tmp23 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */
/* Odd part */
z1 = (INT32) wsptr[1];
z2 = (INT32) wsptr[3];
z3 = (INT32) wsptr[5];
tmp11 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */
tmp12 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */
tmp10 = tmp11 - tmp12;
tmp11 += tmp12;
tmp12 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */
tmp11 += tmp12;
z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */
tmp10 += z2;
tmp12 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */
/* Final output stage */
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
wsptr += 7; /* advance pointer to next row */
}
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a 6x12 output block.
*
* 12-point IDCT in pass 1 (columns), 6-point in pass 2 (rows).
*/
GLOBAL(void)
jpeg_idct_6x12 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25;
INT32 z1, z2, z3, z4;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[6*12]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array.
* 12-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/24).
*/
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = 0; ctr < 6; ctr++, inptr++, quantptr++, wsptr++) {
/* Even part */
z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
z3 <<= CONST_BITS;
/* Add fudge factor here for final descale. */
z3 += ONE << (CONST_BITS-PASS1_BITS-1);
z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */
tmp10 = z3 + z4;
tmp11 = z3 - z4;
z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */
z1 <<= CONST_BITS;
z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
z2 <<= CONST_BITS;
tmp12 = z1 - z2;
tmp21 = z3 + tmp12;
tmp24 = z3 - tmp12;
tmp12 = z4 + z2;
tmp20 = tmp10 + tmp12;
tmp25 = tmp10 - tmp12;
tmp12 = z4 - z1 - z2;
tmp22 = tmp11 + tmp12;
tmp23 = tmp11 - tmp12;
/* Odd part */
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */
tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */
tmp10 = z1 + z3;
tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */
tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */
tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */
tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */
tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */
tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */
tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */
MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */
z1 -= z4;
z2 -= z3;
z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */
tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */
tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */
/* Final output stage */
wsptr[6*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
wsptr[6*11] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
wsptr[6*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
wsptr[6*10] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
wsptr[6*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
wsptr[6*9] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
wsptr[6*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
wsptr[6*8] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
wsptr[6*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
wsptr[6*7] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
wsptr[6*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
wsptr[6*6] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
}
/* Pass 2: process 12 rows from work array, store into output array.
* 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12).
*/
wsptr = workspace;
for (ctr = 0; ctr < 12; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Even part */
/* Add range center and fudge factor for final descale and range-limit. */
tmp10 = (INT32) wsptr[0] +
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
(ONE << (PASS1_BITS+2)));
tmp10 <<= CONST_BITS;
tmp12 = (INT32) wsptr[4];
tmp20 = MULTIPLY(tmp12, FIX(0.707106781)); /* c4 */
tmp11 = tmp10 + tmp20;
tmp21 = tmp10 - tmp20 - tmp20;
tmp20 = (INT32) wsptr[2];
tmp10 = MULTIPLY(tmp20, FIX(1.224744871)); /* c2 */
tmp20 = tmp11 + tmp10;
tmp22 = tmp11 - tmp10;
/* Odd part */
z1 = (INT32) wsptr[1];
z2 = (INT32) wsptr[3];
z3 = (INT32) wsptr[5];
tmp11 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
tmp10 = tmp11 + ((z1 + z2) << CONST_BITS);
tmp12 = tmp11 + ((z3 - z2) << CONST_BITS);
tmp11 = (z1 - z2 - z3) << CONST_BITS;
/* Final output stage */
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
wsptr += 6; /* advance pointer to next row */
}
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a 5x10 output block.
*
* 10-point IDCT in pass 1 (columns), 5-point in pass 2 (rows).
*/
GLOBAL(void)
jpeg_idct_5x10 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
INT32 tmp20, tmp21, tmp22, tmp23, tmp24;
INT32 z1, z2, z3, z4, z5;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[5*10]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array.
* 10-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/20).
*/
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = 0; ctr < 5; ctr++, inptr++, quantptr++, wsptr++) {
/* Even part */
z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
z3 <<= CONST_BITS;
/* Add fudge factor here for final descale. */
z3 += ONE << (CONST_BITS-PASS1_BITS-1);
z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */
z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */
tmp10 = z3 + z1;
tmp11 = z3 - z2;
tmp22 = RIGHT_SHIFT(z3 - ((z1 - z2) << 1), /* c0 = (c4-c8)*2 */
CONST_BITS-PASS1_BITS);
z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */
tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */
tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */
tmp20 = tmp10 + tmp12;
tmp24 = tmp10 - tmp12;
tmp21 = tmp11 + tmp13;
tmp23 = tmp11 - tmp13;
/* Odd part */
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
tmp11 = z2 + z4;
tmp13 = z2 - z4;
tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */
z5 = z3 << CONST_BITS;
z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */
z4 = z5 + tmp12;
tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */
tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */
z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */
z4 = z5 - tmp12 - (tmp13 << (CONST_BITS - 1));
tmp12 = (z1 - tmp13 - z3) << PASS1_BITS;
tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */
tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */
/* Final output stage */
wsptr[5*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
wsptr[5*9] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
wsptr[5*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
wsptr[5*8] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
wsptr[5*2] = (int) (tmp22 + tmp12);
wsptr[5*7] = (int) (tmp22 - tmp12);
wsptr[5*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
wsptr[5*6] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
wsptr[5*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
wsptr[5*5] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
}
/* Pass 2: process 10 rows from work array, store into output array.
* 5-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/10).
*/
wsptr = workspace;
for (ctr = 0; ctr < 10; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Even part */
/* Add range center and fudge factor for final descale and range-limit. */
tmp12 = (INT32) wsptr[0] +
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
(ONE << (PASS1_BITS+2)));
tmp12 <<= CONST_BITS;
tmp13 = (INT32) wsptr[2];
tmp14 = (INT32) wsptr[4];
z1 = MULTIPLY(tmp13 + tmp14, FIX(0.790569415)); /* (c2+c4)/2 */
z2 = MULTIPLY(tmp13 - tmp14, FIX(0.353553391)); /* (c2-c4)/2 */
z3 = tmp12 + z2;
tmp10 = z3 + z1;
tmp11 = z3 - z1;
tmp12 -= z2 << 2;
/* Odd part */
z2 = (INT32) wsptr[1];
z3 = (INT32) wsptr[3];
z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */
tmp13 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */
tmp14 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */
/* Final output stage */
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp13,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp13,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp14,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp14,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
wsptr += 5; /* advance pointer to next row */
}
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a 4x8 output block.
*
* 8-point IDCT in pass 1 (columns), 4-point in pass 2 (rows).
*/
GLOBAL(void)
jpeg_idct_4x8 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp0, tmp1, tmp2, tmp3;
INT32 tmp10, tmp11, tmp12, tmp13;
INT32 z1, z2, z3;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[4*8]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array.
* Note results are scaled up by sqrt(8) compared to a true IDCT;
* furthermore, we scale the results by 2**PASS1_BITS.
* 8-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
*/
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = 4; ctr > 0; ctr--) {
/* Due to quantization, we will usually find that many of the input
* coefficients are zero, especially the AC terms. We can exploit this
* by short-circuiting the IDCT calculation for any column in which all
* the AC terms are zero. In that case each output is equal to the
* DC coefficient (with scale factor as needed).
* With typical images and quantization tables, half or more of the
* column DCT calculations can be simplified this way.
*/
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
inptr[DCTSIZE*7] == 0) {
/* AC terms all zero */
int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
wsptr[4*0] = dcval;
wsptr[4*1] = dcval;
wsptr[4*2] = dcval;
wsptr[4*3] = dcval;
wsptr[4*4] = dcval;
wsptr[4*5] = dcval;
wsptr[4*6] = dcval;
wsptr[4*7] = dcval;
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
continue;
}
/* Even part: reverse the even part of the forward DCT.
* The rotator is c(-6).
*/
z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
z2 <<= CONST_BITS;
z3 <<= CONST_BITS;
/* Add fudge factor here for final descale. */
z2 += ONE << (CONST_BITS-PASS1_BITS-1);
tmp0 = z2 + z3;
tmp1 = z2 - z3;
z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
tmp10 = tmp0 + tmp2;
tmp13 = tmp0 - tmp2;
tmp11 = tmp1 + tmp3;
tmp12 = tmp1 - tmp3;
/* Odd part per figure 8; the matrix is unitary and hence its
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
*/
tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
z2 = tmp0 + tmp2;
z3 = tmp1 + tmp3;
z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* c3 */
z2 = MULTIPLY(z2, - FIX_1_961570560); /* -c3-c5 */
z3 = MULTIPLY(z3, - FIX_0_390180644); /* -c3+c5 */
z2 += z1;
z3 += z1;
z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* -c1+c3+c5-c7 */
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* c1+c3-c5-c7 */
tmp0 += z1 + z2;
tmp3 += z1 + z3;
z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* c1+c3-c5+c7 */
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* c1+c3+c5-c7 */
tmp1 += z1 + z3;
tmp2 += z1 + z2;
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
wsptr[4*0] = (int) RIGHT_SHIFT(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
wsptr[4*7] = (int) RIGHT_SHIFT(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
wsptr[4*1] = (int) RIGHT_SHIFT(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
wsptr[4*6] = (int) RIGHT_SHIFT(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
wsptr[4*2] = (int) RIGHT_SHIFT(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
wsptr[4*5] = (int) RIGHT_SHIFT(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
wsptr[4*3] = (int) RIGHT_SHIFT(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
wsptr[4*4] = (int) RIGHT_SHIFT(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
}
/* Pass 2: process 8 rows from work array, store into output array.
* 4-point IDCT kernel,
* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point IDCT].
*/
wsptr = workspace;
for (ctr = 0; ctr < 8; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Even part */
/* Add range center and fudge factor for final descale and range-limit. */
tmp0 = (INT32) wsptr[0] +
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
(ONE << (PASS1_BITS+2)));
tmp2 = (INT32) wsptr[2];
tmp10 = (tmp0 + tmp2) << CONST_BITS;
tmp12 = (tmp0 - tmp2) << CONST_BITS;
/* Odd part */
/* Same rotation as in the even part of the 8x8 LL&M IDCT */
z2 = (INT32) wsptr[1];
z3 = (INT32) wsptr[3];
z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
tmp0 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
tmp2 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
/* Final output stage */
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
wsptr += 4; /* advance pointer to next row */
}
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a 3x6 output block.
*
* 6-point IDCT in pass 1 (columns), 3-point in pass 2 (rows).
*/
GLOBAL(void)
jpeg_idct_3x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12;
INT32 z1, z2, z3;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[3*6]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array.
* 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12).
*/
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = 0; ctr < 3; ctr++, inptr++, quantptr++, wsptr++) {
/* Even part */
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
tmp0 <<= CONST_BITS;
/* Add fudge factor here for final descale. */
tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */
tmp1 = tmp0 + tmp10;
tmp11 = RIGHT_SHIFT(tmp0 - tmp10 - tmp10, CONST_BITS-PASS1_BITS);
tmp10 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */
tmp10 = tmp1 + tmp0;
tmp12 = tmp1 - tmp0;
/* Odd part */
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
tmp0 = tmp1 + ((z1 + z2) << CONST_BITS);
tmp2 = tmp1 + ((z3 - z2) << CONST_BITS);
tmp1 = (z1 - z2 - z3) << PASS1_BITS;
/* Final output stage */
wsptr[3*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
wsptr[3*5] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
wsptr[3*1] = (int) (tmp11 + tmp1);
wsptr[3*4] = (int) (tmp11 - tmp1);
wsptr[3*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS);
wsptr[3*3] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS);
}
/* Pass 2: process 6 rows from work array, store into output array.
* 3-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/6).
*/
wsptr = workspace;
for (ctr = 0; ctr < 6; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Even part */
/* Add range center and fudge factor for final descale and range-limit. */
tmp0 = (INT32) wsptr[0] +
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
(ONE << (PASS1_BITS+2)));
tmp0 <<= CONST_BITS;
tmp2 = (INT32) wsptr[2];
tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */
tmp10 = tmp0 + tmp12;
tmp2 = tmp0 - tmp12 - tmp12;
/* Odd part */
tmp12 = (INT32) wsptr[1];
tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */
/* Final output stage */
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp2,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
wsptr += 3; /* advance pointer to next row */
}
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a 2x4 output block.
*
* 4-point IDCT in pass 1 (columns), 2-point in pass 2 (rows).
*/
GLOBAL(void)
jpeg_idct_2x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp0, tmp2, tmp10, tmp12;
INT32 z1, z2, z3;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
INT32 * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
INT32 workspace[2*4]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array.
* 4-point IDCT kernel,
* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point IDCT].
*/
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = 0; ctr < 2; ctr++, inptr++, quantptr++, wsptr++) {
/* Even part */
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
tmp10 = (tmp0 + tmp2) << CONST_BITS;
tmp12 = (tmp0 - tmp2) << CONST_BITS;
/* Odd part */
/* Same rotation as in the even part of the 8x8 LL&M IDCT */
z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
tmp0 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
tmp2 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
/* Final output stage */
wsptr[2*0] = tmp10 + tmp0;
wsptr[2*3] = tmp10 - tmp0;
wsptr[2*1] = tmp12 + tmp2;
wsptr[2*2] = tmp12 - tmp2;
}
/* Pass 2: process 4 rows from work array, store into output array. */
wsptr = workspace;
for (ctr = 0; ctr < 4; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Even part */
/* Add range center and fudge factor for final descale and range-limit. */
tmp10 = wsptr[0] +
((((INT32) RANGE_CENTER) << (CONST_BITS+3)) +
(ONE << (CONST_BITS+2)));
/* Odd part */
tmp0 = wsptr[1];
/* Final output stage */
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS+3)
& RANGE_MASK];
wsptr += 2; /* advance pointer to next row */
}
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a 1x2 output block.
*
* 2-point IDCT in pass 1 (columns), 1-point in pass 2 (rows).
*/
GLOBAL(void)
jpeg_idct_1x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
DCTELEM tmp0, tmp1;
ISLOW_MULT_TYPE * quantptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
ISHIFT_TEMPS
/* Process 1 column from input, store into output array. */
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
/* Even part */
tmp0 = DEQUANTIZE(coef_block[DCTSIZE*0], quantptr[DCTSIZE*0]);
/* Add range center and fudge factor for final descale and range-limit. */
tmp0 += (((DCTELEM) RANGE_CENTER) << 3) + (1 << 2);
/* Odd part */
tmp1 = DEQUANTIZE(coef_block[DCTSIZE*1], quantptr[DCTSIZE*1]);
/* Final output stage */
output_buf[0][output_col] =
range_limit[(int) IRIGHT_SHIFT(tmp0 + tmp1, 3) & RANGE_MASK];
output_buf[1][output_col] =
range_limit[(int) IRIGHT_SHIFT(tmp0 - tmp1, 3) & RANGE_MASK];
}
#endif /* IDCT_SCALING_SUPPORTED */
#endif /* DCT_ISLOW_SUPPORTED */
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
C
1
https://gitee.com/lengjianjun/ijg.git
[email protected]:lengjianjun/ijg.git
lengjianjun
ijg
ijg
master

搜索帮助