1 Star 1 Fork 0

lengjianjun/ijg

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
jcsample.c 20.00 KB
一键复制 编辑 原始数据 按行查看 历史
lengjianjun 提交于 2024-04-21 20:15 . no commit message
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545
/*
* jcsample.c
*
* Copyright (C) 1991-1996, Thomas G. Lane.
* Modified 2003-2020 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains downsampling routines.
*
* Downsampling input data is counted in "row groups". A row group
* is defined to be max_v_samp_factor pixel rows of each component,
* from which the downsampler produces v_samp_factor sample rows.
* A single row group is processed in each call to the downsampler module.
*
* The downsampler is responsible for edge-expansion of its output data
* to fill an integral number of DCT blocks horizontally. The source buffer
* may be modified if it is helpful for this purpose (the source buffer is
* allocated wide enough to correspond to the desired output width).
* The caller (the prep controller) is responsible for vertical padding.
*
* The downsampler may request "context rows" by setting need_context_rows
* during startup. In this case, the input arrays will contain at least
* one row group's worth of pixels above and below the passed-in data;
* the caller will create dummy rows at image top and bottom by replicating
* the first or last real pixel row.
*
* An excellent reference for image resampling is
* Digital Image Warping, George Wolberg, 1990.
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
*
* The downsampling algorithm used here is a simple average of the source
* pixels covered by the output pixel. The hi-falutin sampling literature
* refers to this as a "box filter". In general the characteristics of a box
* filter are not very good, but for the specific cases we normally use (1:1
* and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
* nearly so bad. If you intend to use other sampling ratios, you'd be well
* advised to improve this code.
*
* A simple input-smoothing capability is provided. This is mainly intended
* for cleaning up color-dithered GIF input files (if you find it inadequate,
* we suggest using an external filtering program such as pnmconvol). When
* enabled, each input pixel P is replaced by a weighted sum of itself and its
* eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF,
* where SF = (smoothing_factor / 1024).
* Currently, smoothing is only supported for 2h2v sampling factors.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Pointer to routine to downsample a single component */
typedef JMETHOD(void, downsample1_ptr,
(j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY output_data));
/* Private subobject */
typedef struct {
struct jpeg_downsampler pub; /* public fields */
/* Downsampling method pointers, one per component */
downsample1_ptr methods[MAX_COMPONENTS];
/* Height of an output row group for each component. */
int rowgroup_height[MAX_COMPONENTS];
/* These arrays save pixel expansion factors so that int_downsample need not
* recompute them each time. They are unused for other downsampling methods.
*/
UINT8 h_expand[MAX_COMPONENTS];
UINT8 v_expand[MAX_COMPONENTS];
} my_downsampler;
typedef my_downsampler * my_downsample_ptr;
/*
* Initialize for a downsampling pass.
*/
METHODDEF(void)
start_pass_downsample (j_compress_ptr cinfo)
{
/* no work for now */
}
/*
* Expand a component horizontally from width input_cols to width output_cols,
* by duplicating the rightmost samples.
*/
LOCAL(void)
expand_right_edge (JSAMPARRAY image_data, int num_rows,
JDIMENSION input_cols, JDIMENSION output_cols)
{
register JSAMPROW ptr;
register JSAMPLE pixval;
register int count;
int row;
int numcols = (int) (output_cols - input_cols);
if (numcols > 0) {
for (row = 0; row < num_rows; row++) {
ptr = image_data[row] + input_cols;
pixval = ptr[-1]; /* don't need GETJSAMPLE() here */
for (count = numcols; count > 0; count--)
*ptr++ = pixval;
}
}
}
/*
* Do downsampling for a whole row group (all components).
*
* In this version we simply downsample each component independently.
*/
METHODDEF(void)
sep_downsample (j_compress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION in_row_index,
JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
{
my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
int ci;
jpeg_component_info * compptr;
JSAMPARRAY in_ptr, out_ptr;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
in_ptr = input_buf[ci] + in_row_index;
out_ptr = output_buf[ci] +
(out_row_group_index * downsample->rowgroup_height[ci]);
(*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
}
}
/*
* Downsample pixel values of a single component.
* One row group is processed per call.
* This version handles arbitrary integral sampling ratios, without smoothing.
* Note that this version is not actually used for customary sampling ratios.
*/
METHODDEF(void)
int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY output_data)
{
my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
JSAMPROW inptr, outptr;
INT32 outvalue;
h_expand = downsample->h_expand[compptr->component_index];
v_expand = downsample->v_expand[compptr->component_index];
numpix = h_expand * v_expand;
numpix2 = numpix/2;
/* Expand input data enough to let all the output samples be generated
* by the standard loop. Special-casing padded output would be more
* efficient.
*/
expand_right_edge(input_data, cinfo->max_v_samp_factor,
cinfo->image_width, output_cols * h_expand);
inrow = outrow = 0;
while (inrow < cinfo->max_v_samp_factor) {
outptr = output_data[outrow];
for (outcol = 0, outcol_h = 0; outcol < output_cols;
outcol++, outcol_h += h_expand) {
outvalue = 0;
for (v = 0; v < v_expand; v++) {
inptr = input_data[inrow+v] + outcol_h;
for (h = 0; h < h_expand; h++) {
outvalue += (INT32) GETJSAMPLE(*inptr++);
}
}
*outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);
}
inrow += v_expand;
outrow++;
}
}
/*
* Downsample pixel values of a single component.
* This version handles the special case of a full-size component,
* without smoothing.
*/
METHODDEF(void)
fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY output_data)
{
/* Copy the data */
jcopy_sample_rows(input_data, output_data,
cinfo->max_v_samp_factor, cinfo->image_width);
/* Edge-expand */
expand_right_edge(output_data, cinfo->max_v_samp_factor, cinfo->image_width,
compptr->width_in_blocks * compptr->DCT_h_scaled_size);
}
/*
* Downsample pixel values of a single component.
* This version handles the common case of 2:1 horizontal and 1:1 vertical,
* without smoothing.
*
* A note about the "bias" calculations: when rounding fractional values to
* integer, we do not want to always round 0.5 up to the next integer.
* If we did that, we'd introduce a noticeable bias towards larger values.
* Instead, this code is arranged so that 0.5 will be rounded up or down at
* alternate pixel locations (a simple ordered dither pattern).
*/
METHODDEF(void)
h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY output_data)
{
int inrow;
JDIMENSION outcol;
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
register JSAMPROW inptr, outptr;
register int bias;
/* Expand input data enough to let all the output samples be generated
* by the standard loop. Special-casing padded output would be more
* efficient.
*/
expand_right_edge(input_data, cinfo->max_v_samp_factor,
cinfo->image_width, output_cols * 2);
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
outptr = output_data[inrow];
inptr = input_data[inrow];
bias = 0; /* bias = 0,1,0,1,... for successive samples */
for (outcol = 0; outcol < output_cols; outcol++) {
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])
+ bias) >> 1);
bias ^= 1; /* 0=>1, 1=>0 */
inptr += 2;
}
}
}
/*
* Downsample pixel values of a single component.
* This version handles the standard case of 2:1 horizontal and 2:1 vertical,
* without smoothing.
*/
METHODDEF(void)
h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY output_data)
{
int inrow, outrow;
JDIMENSION outcol;
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
register JSAMPROW inptr0, inptr1, outptr;
register int bias;
/* Expand input data enough to let all the output samples be generated
* by the standard loop. Special-casing padded output would be more
* efficient.
*/
expand_right_edge(input_data, cinfo->max_v_samp_factor,
cinfo->image_width, output_cols * 2);
inrow = outrow = 0;
while (inrow < cinfo->max_v_samp_factor) {
outptr = output_data[outrow];
inptr0 = input_data[inrow];
inptr1 = input_data[inrow+1];
bias = 1; /* bias = 1,2,1,2,... for successive samples */
for (outcol = 0; outcol < output_cols; outcol++) {
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
+ bias) >> 2);
bias ^= 3; /* 1=>2, 2=>1 */
inptr0 += 2; inptr1 += 2;
}
inrow += 2;
outrow++;
}
}
#ifdef INPUT_SMOOTHING_SUPPORTED
/*
* Downsample pixel values of a single component.
* This version handles the standard case of 2:1 horizontal and 2:1 vertical,
* with smoothing. One row of context is required.
*/
METHODDEF(void)
h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY output_data)
{
int inrow, outrow;
JDIMENSION colctr;
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
INT32 membersum, neighsum, memberscale, neighscale;
/* Expand input data enough to let all the output samples be generated
* by the standard loop. Special-casing padded output would be more
* efficient.
*/
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
cinfo->image_width, output_cols * 2);
/* We don't bother to form the individual "smoothed" input pixel values;
* we can directly compute the output which is the average of the four
* smoothed values. Each of the four member pixels contributes a fraction
* (1-8*SF) to its own smoothed image and a fraction SF to each of the three
* other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
* output. The four corner-adjacent neighbor pixels contribute a fraction
* SF to just one smoothed pixel, or SF/4 to the final output; while the
* eight edge-adjacent neighbors contribute SF to each of two smoothed
* pixels, or SF/2 overall. In order to use integer arithmetic, these
* factors are scaled by 2^16 = 65536.
* Also recall that SF = smoothing_factor / 1024.
*/
memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
inrow = outrow = 0;
while (inrow < cinfo->max_v_samp_factor) {
outptr = output_data[outrow];
inptr0 = input_data[inrow];
inptr1 = input_data[inrow+1];
above_ptr = input_data[inrow-1];
below_ptr = input_data[inrow+2];
/* Special case for first column: pretend column -1 is same as column 0 */
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
neighsum += neighsum;
neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
membersum = membersum * memberscale + neighsum * neighscale;
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
for (colctr = output_cols - 2; colctr > 0; colctr--) {
/* sum of pixels directly mapped to this output element */
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
/* sum of edge-neighbor pixels */
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
/* The edge-neighbors count twice as much as corner-neighbors */
neighsum += neighsum;
/* Add in the corner-neighbors */
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
/* form final output scaled up by 2^16 */
membersum = membersum * memberscale + neighsum * neighscale;
/* round, descale and output it */
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
}
/* Special case for last column */
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
neighsum += neighsum;
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
membersum = membersum * memberscale + neighsum * neighscale;
*outptr = (JSAMPLE) ((membersum + 32768) >> 16);
inrow += 2;
outrow++;
}
}
/*
* Downsample pixel values of a single component.
* This version handles the special case of a full-size component,
* with smoothing. One row of context is required.
*/
METHODDEF(void)
fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
JSAMPARRAY input_data, JSAMPARRAY output_data)
{
int inrow;
JDIMENSION colctr;
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
register JSAMPROW inptr, above_ptr, below_ptr, outptr;
INT32 membersum, neighsum, memberscale, neighscale;
int colsum, lastcolsum, nextcolsum;
/* Expand input data enough to let all the output samples be generated
* by the standard loop. Special-casing padded output would be more
* efficient.
*/
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
cinfo->image_width, output_cols);
/* Each of the eight neighbor pixels contributes a fraction SF to the
* smoothed pixel, while the main pixel contributes (1-8*SF). In order
* to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
* Also recall that SF = smoothing_factor / 1024.
*/
memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
outptr = output_data[inrow];
inptr = input_data[inrow];
above_ptr = input_data[inrow-1];
below_ptr = input_data[inrow+1];
/* Special case for first column */
colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
GETJSAMPLE(*inptr);
membersum = GETJSAMPLE(*inptr++);
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
GETJSAMPLE(*inptr);
neighsum = colsum + (colsum - membersum) + nextcolsum;
membersum = membersum * memberscale + neighsum * neighscale;
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
lastcolsum = colsum; colsum = nextcolsum;
for (colctr = output_cols - 2; colctr > 0; colctr--) {
membersum = GETJSAMPLE(*inptr++);
above_ptr++; below_ptr++;
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
GETJSAMPLE(*inptr);
neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
membersum = membersum * memberscale + neighsum * neighscale;
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
lastcolsum = colsum; colsum = nextcolsum;
}
/* Special case for last column */
membersum = GETJSAMPLE(*inptr);
neighsum = lastcolsum + (colsum - membersum) + colsum;
membersum = membersum * memberscale + neighsum * neighscale;
*outptr = (JSAMPLE) ((membersum + 32768) >> 16);
}
}
#endif /* INPUT_SMOOTHING_SUPPORTED */
/*
* Module initialization routine for downsampling.
* Note that we must select a routine for each component.
*/
GLOBAL(void)
jinit_downsampler (j_compress_ptr cinfo)
{
my_downsample_ptr downsample;
int ci;
jpeg_component_info * compptr;
boolean smoothok = TRUE;
int h_in_group, v_in_group, h_out_group, v_out_group;
downsample = (my_downsample_ptr) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_downsampler));
cinfo->downsample = &downsample->pub;
downsample->pub.start_pass = start_pass_downsample;
downsample->pub.downsample = sep_downsample;
downsample->pub.need_context_rows = FALSE;
if (cinfo->CCIR601_sampling)
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
/* Verify we can handle the sampling factors, and set up method pointers */
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Compute size of an "output group" for DCT scaling. This many samples
* are to be converted from max_h_samp_factor * max_v_samp_factor pixels.
*/
h_out_group = (compptr->h_samp_factor * compptr->DCT_h_scaled_size) /
cinfo->min_DCT_h_scaled_size;
v_out_group = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
cinfo->min_DCT_v_scaled_size;
h_in_group = cinfo->max_h_samp_factor;
v_in_group = cinfo->max_v_samp_factor;
downsample->rowgroup_height[ci] = v_out_group; /* save for use later */
if (h_in_group == h_out_group && v_in_group == v_out_group) {
#ifdef INPUT_SMOOTHING_SUPPORTED
if (cinfo->smoothing_factor) {
downsample->methods[ci] = fullsize_smooth_downsample;
downsample->pub.need_context_rows = TRUE;
} else
#endif
downsample->methods[ci] = fullsize_downsample;
} else if (h_in_group == h_out_group * 2 &&
v_in_group == v_out_group) {
smoothok = FALSE;
downsample->methods[ci] = h2v1_downsample;
} else if (h_in_group == h_out_group * 2 &&
v_in_group == v_out_group * 2) {
#ifdef INPUT_SMOOTHING_SUPPORTED
if (cinfo->smoothing_factor) {
downsample->methods[ci] = h2v2_smooth_downsample;
downsample->pub.need_context_rows = TRUE;
} else
#endif
downsample->methods[ci] = h2v2_downsample;
} else if ((h_in_group % h_out_group) == 0 &&
(v_in_group % v_out_group) == 0) {
smoothok = FALSE;
downsample->methods[ci] = int_downsample;
downsample->h_expand[ci] = (UINT8) (h_in_group / h_out_group);
downsample->v_expand[ci] = (UINT8) (v_in_group / v_out_group);
} else
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
}
#ifdef INPUT_SMOOTHING_SUPPORTED
if (cinfo->smoothing_factor && !smoothok)
TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
#endif
}
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
C
1
https://gitee.com/lengjianjun/ijg.git
[email protected]:lengjianjun/ijg.git
lengjianjun
ijg
ijg
master

搜索帮助