代码拉取完成,页面将自动刷新
同步操作将从 MindSpore/mindformers 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Run MindFormer."""
import argparse
import os
from pprint import pprint
import numpy as np
from mindspore.common import set_seed
from mindformers.tools.register import MindFormerConfig, ActionDict
from mindformers.common.parallel_config import build_parallel_config
from mindformers.tools.utils import str2bool
from mindformers.common.context import build_context
from mindformers.trainer import build_trainer
from mindformers.tools.cloud_adapter import cloud_monitor
from mindformers.tools.logger import logger
from mindformers.mindformer_book import MindFormerBook
SUPPORT_MODEL_NAMES = MindFormerBook().get_model_name_support_list()
@cloud_monitor()
def main(config):
"""main."""
# init context
set_seed(config.seed)
np.random.seed(config.seed)
cfts, profile_cb = build_context(config)
# build context config
logger.info(".........Build context config..........")
build_parallel_config(config)
logger.info("context config is: %s", config.parallel_config)
logger.info("moe config is: %s", config.moe_config)
# auto pull dataset if on ModelArts platform
if config.train_dataset:
config.train_dataset.data_loader.dataset_dir = cfts.get_dataset(
config.train_dataset.data_loader.dataset_dir)
if config.eval_dataset:
config.eval_dataset.data_loader.dataset_dir = cfts.get_dataset(
config.eval_dataset.data_loader.dataset_dir)
if config.run_mode == 'finetune' and not config.resume_or_finetune_checkpoint:
raise ValueError("if run status is finetune, "
"load_checkpoint or resume_or_finetune_checkpoint is invalid, "
"it must be input")
# auto pull checkpoint if on ModelArts platform
if config.resume_or_finetune_checkpoint:
config.resume_or_finetune_checkpoint = cfts.get_checkpoint(config.resume_or_finetune_checkpoint)
if config.run_mode == 'train':
config.model.model_config.checkpoint_name_or_path = None
else:
config.model.model_config.checkpoint_name_or_path = config.resume_or_finetune_checkpoint
config.resume_or_finetune_checkpoint = None
# define callback and add profile callback
if config.profile:
config.profile_cb = profile_cb
if config.local_rank % 8 == 0:
pprint(config)
trainer = build_trainer(config.trainer)
if config.run_mode == 'train' or config.run_mode == 'finetune':
trainer.train(config)
elif config.run_mode == 'eval':
trainer.evaluate(config)
elif config.run_mode == 'predict':
trainer.predict(config)
if __name__ == "__main__":
work_path = os.path.dirname(os.path.abspath(__file__))
parser = argparse.ArgumentParser()
parser.add_argument(
'--config',
default=os.path.join(
work_path, "configs/mae/run_mae_vit_base_p16_224_800ep.yaml"),
required=True,
help='YAML config files')
parser.add_argument(
'--mode', default=None, type=int,
help='Running in GRAPH_MODE(0) or PYNATIVE_MODE(1). Default: GRAPH_MODE(0).'
'GRAPH_MODE or PYNATIVE_MODE can be set by `mode` attribute and both modes support all backends,'
'Default: None')
parser.add_argument(
'--device_id', default=None, type=int,
help='ID of the target device, the value must be in [0, device_num_per_host-1], '
'while device_num_per_host should be no more than 4096. Default: None')
parser.add_argument(
'--device_target', default=None, type=str,
help='The target device to run, support "Ascend", "GPU", and "CPU".'
'If device target is not set, the version of MindSpore package is used.'
'Default: None')
parser.add_argument(
'--run_mode', default=None, type=str,
help='task running status, it support [train, finetune, eval, predict].'
'Default: None')
parser.add_argument(
'--dataset_dir', default=None, type=str,
help='dataset directory of data loader to train/finetune/eval. '
'Default: None')
parser.add_argument(
'--predict_data', default=None, type=str,
help='input data for predict, it support real data path or data directory.'
'Default: None')
parser.add_argument(
'--load_checkpoint', default=None, type=str,
help="load model checkpoint to train/finetune/eval/predict, "
"it is also support input model name, such as 'mae_vit_base_p16', "
"please refer to https://gitee.com/mindspore/transformer#%E4%BB%8B%E7%BB%8D."
"Default: None")
parser.add_argument(
'--seed', default=None, type=int,
help='global random seed to train/finetune.'
'Default: None')
parser.add_argument(
'--use_parallel', default=None, type=str2bool,
help='whether use parallel mode. Default: None')
parser.add_argument(
'--profile', default=None, type=str2bool,
help='whether use profile analysis. Default: None')
parser.add_argument(
'--options',
nargs='+',
action=ActionDict,
help='override some settings in the used config, the key-value pair'
'in xxx=yyy format will be merged into config file')
args_ = parser.parse_args()
config_ = MindFormerConfig(args_.config)
if args_.device_id is not None:
config_.context.device_id = args_.device_id
if args_.device_target is not None:
config_.context.device_target = args_.device_target
if args_.mode is not None:
config_.context.mode = args_.mode
if args_.run_mode is not None:
config_.run_mode = args_.run_mode
if args_.seed is not None:
config_.seed = args_.seed
if args_.use_parallel is not None:
config_.use_parallel = args_.use_parallel
if args_.load_checkpoint is not None:
config_.resume_or_finetune_checkpoint = args_.load_checkpoint
if args_.profile is not None:
config_.profile = args_.profile
if args_.options is not None:
config_.merge_from_dict(args_.options)
assert config_.run_mode in ['train', 'eval', 'predict', 'finetune'], \
f"run status must be in {['train', 'eval', 'predict', 'finetune']}, but get {config_.run_mode}"
if args_.dataset_dir:
if config_.run_mode == 'train' or config_.run_mode == 'finetune':
config_.train_dataset.data_loader.dataset_dir = args_.dataset_dir
if config_.run_mode == 'eval':
config_.eval_dataset.data_loader.dataset_dir = args_.dataset_dir
if config_.run_mode == 'predict':
if args_.predict_data is None:
logger.info("dataset by config is used as input_data.")
elif os.path.isdir(args_.predict_data) and os.path.exists(args_.predict_data):
predict_data = [os.path.join(root, file)
for root, _, file_list in os.walk(os.path.join(args_.predict_data)) for file in file_list
if file.endswith(".jpg") or file.endswith(".png") or file.endswith(".jpeg")
or file.endswith(".JPEG") or file.endswith("bmp")]
args_.predict_data = predict_data
config_.input_data = args_.predict_data
main(config_)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。