代码拉取完成,页面将自动刷新
同步操作将从 北京智云视图科技有限公司/Mobilenet-SSD-License-Plate-Detection 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
name: "MobileNet-SSD"
input: "data"
input_shape {
dim: 1
dim: 3
dim: 640
dim: 480
}
layer {
name: "conv0"
type: "Convolution"
bottom: "data"
top: "conv0"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 32
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv0/bn"
type: "BatchNorm"
bottom: "conv0"
top: "conv0"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv0/scale"
type: "Scale"
bottom: "conv0"
top: "conv0"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv0/relu"
type: "ReLU"
bottom: "conv0"
top: "conv0"
}
layer {
name: "conv1/dw"
type: "Convolution"
bottom: "conv0"
top: "conv1/dw"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 32
bias_term: false
pad: 1
kernel_size: 3
group: 32
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv1/dw/bn"
type: "BatchNorm"
bottom: "conv1/dw"
top: "conv1/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv1/dw/scale"
type: "Scale"
bottom: "conv1/dw"
top: "conv1/dw"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv1/dw/relu"
type: "ReLU"
bottom: "conv1/dw"
top: "conv1/dw"
}
layer {
name: "conv1"
type: "Convolution"
bottom: "conv1/dw"
top: "conv1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 64
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv1/bn"
type: "BatchNorm"
bottom: "conv1"
top: "conv1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv1/scale"
type: "Scale"
bottom: "conv1"
top: "conv1"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv1/relu"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "conv2/dw"
type: "Convolution"
bottom: "conv1"
top: "conv2/dw"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 64
bias_term: false
pad: 1
kernel_size: 3
stride: 2
group: 64
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv2/dw/bn"
type: "BatchNorm"
bottom: "conv2/dw"
top: "conv2/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv2/dw/scale"
type: "Scale"
bottom: "conv2/dw"
top: "conv2/dw"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv2/dw/relu"
type: "ReLU"
bottom: "conv2/dw"
top: "conv2/dw"
}
layer {
name: "conv2"
type: "Convolution"
bottom: "conv2/dw"
top: "conv2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 128
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv2/bn"
type: "BatchNorm"
bottom: "conv2"
top: "conv2"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv2/scale"
type: "Scale"
bottom: "conv2"
top: "conv2"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv2/relu"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "conv3/dw"
type: "Convolution"
bottom: "conv2"
top: "conv3/dw"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
group: 128
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv3/dw/bn"
type: "BatchNorm"
bottom: "conv3/dw"
top: "conv3/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv3/dw/scale"
type: "Scale"
bottom: "conv3/dw"
top: "conv3/dw"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv3/dw/relu"
type: "ReLU"
bottom: "conv3/dw"
top: "conv3/dw"
}
layer {
name: "conv3"
type: "Convolution"
bottom: "conv3/dw"
top: "conv3"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 128
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv3/bn"
type: "BatchNorm"
bottom: "conv3"
top: "conv3"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv3/scale"
type: "Scale"
bottom: "conv3"
top: "conv3"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv3/relu"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4/dw"
type: "Convolution"
bottom: "conv3"
top: "conv4/dw"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
stride: 2
group: 128
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4/dw/bn"
type: "BatchNorm"
bottom: "conv4/dw"
top: "conv4/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv4/dw/scale"
type: "Scale"
bottom: "conv4/dw"
top: "conv4/dw"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv4/dw/relu"
type: "ReLU"
bottom: "conv4/dw"
top: "conv4/dw"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv4/dw"
top: "conv4"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 256
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv4/bn"
type: "BatchNorm"
bottom: "conv4"
top: "conv4"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv4/scale"
type: "Scale"
bottom: "conv4"
top: "conv4"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv4/relu"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5/dw"
type: "Convolution"
bottom: "conv4"
top: "conv5/dw"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
group: 256
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5/dw/bn"
type: "BatchNorm"
bottom: "conv5/dw"
top: "conv5/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv5/dw/scale"
type: "Scale"
bottom: "conv5/dw"
top: "conv5/dw"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv5/dw/relu"
type: "ReLU"
bottom: "conv5/dw"
top: "conv5/dw"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv5/dw"
top: "conv5"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 256
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv5/bn"
type: "BatchNorm"
bottom: "conv5"
top: "conv5"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv5/scale"
type: "Scale"
bottom: "conv5"
top: "conv5"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv5/relu"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "conv6/dw"
type: "Convolution"
bottom: "conv5"
top: "conv6/dw"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
stride: 2
group: 256
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6/dw/bn"
type: "BatchNorm"
bottom: "conv6/dw"
top: "conv6/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv6/dw/scale"
type: "Scale"
bottom: "conv6/dw"
top: "conv6/dw"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv6/dw/relu"
type: "ReLU"
bottom: "conv6/dw"
top: "conv6/dw"
}
layer {
name: "conv6"
type: "Convolution"
bottom: "conv6/dw"
top: "conv6"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv6/bn"
type: "BatchNorm"
bottom: "conv6"
top: "conv6"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv6/scale"
type: "Scale"
bottom: "conv6"
top: "conv6"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv6/relu"
type: "ReLU"
bottom: "conv6"
top: "conv6"
}
layer {
name: "conv7/dw"
type: "Convolution"
bottom: "conv6"
top: "conv7/dw"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv7/dw/bn"
type: "BatchNorm"
bottom: "conv7/dw"
top: "conv7/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv7/dw/scale"
type: "Scale"
bottom: "conv7/dw"
top: "conv7/dw"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv7/dw/relu"
type: "ReLU"
bottom: "conv7/dw"
top: "conv7/dw"
}
layer {
name: "conv7"
type: "Convolution"
bottom: "conv7/dw"
top: "conv7"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv7/bn"
type: "BatchNorm"
bottom: "conv7"
top: "conv7"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv7/scale"
type: "Scale"
bottom: "conv7"
top: "conv7"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv7/relu"
type: "ReLU"
bottom: "conv7"
top: "conv7"
}
layer {
name: "conv8/dw"
type: "Convolution"
bottom: "conv7"
top: "conv8/dw"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv8/dw/bn"
type: "BatchNorm"
bottom: "conv8/dw"
top: "conv8/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv8/dw/scale"
type: "Scale"
bottom: "conv8/dw"
top: "conv8/dw"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv8/dw/relu"
type: "ReLU"
bottom: "conv8/dw"
top: "conv8/dw"
}
layer {
name: "conv8"
type: "Convolution"
bottom: "conv8/dw"
top: "conv8"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv8/bn"
type: "BatchNorm"
bottom: "conv8"
top: "conv8"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv8/scale"
type: "Scale"
bottom: "conv8"
top: "conv8"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv8/relu"
type: "ReLU"
bottom: "conv8"
top: "conv8"
}
layer {
name: "conv9/dw"
type: "Convolution"
bottom: "conv8"
top: "conv9/dw"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv9/dw/bn"
type: "BatchNorm"
bottom: "conv9/dw"
top: "conv9/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv9/dw/scale"
type: "Scale"
bottom: "conv9/dw"
top: "conv9/dw"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv9/dw/relu"
type: "ReLU"
bottom: "conv9/dw"
top: "conv9/dw"
}
layer {
name: "conv9"
type: "Convolution"
bottom: "conv9/dw"
top: "conv9"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv9/bn"
type: "BatchNorm"
bottom: "conv9"
top: "conv9"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv9/scale"
type: "Scale"
bottom: "conv9"
top: "conv9"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv9/relu"
type: "ReLU"
bottom: "conv9"
top: "conv9"
}
layer {
name: "conv10/dw"
type: "Convolution"
bottom: "conv9"
top: "conv10/dw"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv10/dw/bn"
type: "BatchNorm"
bottom: "conv10/dw"
top: "conv10/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv10/dw/scale"
type: "Scale"
bottom: "conv10/dw"
top: "conv10/dw"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv10/dw/relu"
type: "ReLU"
bottom: "conv10/dw"
top: "conv10/dw"
}
layer {
name: "conv10"
type: "Convolution"
bottom: "conv10/dw"
top: "conv10"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv10/bn"
type: "BatchNorm"
bottom: "conv10"
top: "conv10"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv10/scale"
type: "Scale"
bottom: "conv10"
top: "conv10"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv10/relu"
type: "ReLU"
bottom: "conv10"
top: "conv10"
}
layer {
name: "conv11/dw"
type: "Convolution"
bottom: "conv10"
top: "conv11/dw"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv11/dw/bn"
type: "BatchNorm"
bottom: "conv11/dw"
top: "conv11/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv11/dw/scale"
type: "Scale"
bottom: "conv11/dw"
top: "conv11/dw"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv11/dw/relu"
type: "ReLU"
bottom: "conv11/dw"
top: "conv11/dw"
}
layer {
name: "conv11"
type: "Convolution"
bottom: "conv11/dw"
top: "conv11"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 512
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv11/bn"
type: "BatchNorm"
bottom: "conv11"
top: "conv11"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv11/scale"
type: "Scale"
bottom: "conv11"
top: "conv11"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv11/relu"
type: "ReLU"
bottom: "conv11"
top: "conv11"
}
layer {
name: "conv12/dw"
type: "Convolution"
bottom: "conv11"
top: "conv12/dw"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
stride: 2
group: 512
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv12/dw/bn"
type: "BatchNorm"
bottom: "conv12/dw"
top: "conv12/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv12/dw/scale"
type: "Scale"
bottom: "conv12/dw"
top: "conv12/dw"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv12/dw/relu"
type: "ReLU"
bottom: "conv12/dw"
top: "conv12/dw"
}
layer {
name: "conv12"
type: "Convolution"
bottom: "conv12/dw"
top: "conv12"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 1024
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv12/bn"
type: "BatchNorm"
bottom: "conv12"
top: "conv12"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv12/scale"
type: "Scale"
bottom: "conv12"
top: "conv12"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv12/relu"
type: "ReLU"
bottom: "conv12"
top: "conv12"
}
layer {
name: "conv13/dw"
type: "Convolution"
bottom: "conv12"
top: "conv13/dw"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 1024
bias_term: false
pad: 1
kernel_size: 3
group: 1024
engine: CAFFE
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv13/dw/bn"
type: "BatchNorm"
bottom: "conv13/dw"
top: "conv13/dw"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv13/dw/scale"
type: "Scale"
bottom: "conv13/dw"
top: "conv13/dw"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv13/dw/relu"
type: "ReLU"
bottom: "conv13/dw"
top: "conv13/dw"
}
layer {
name: "conv13"
type: "Convolution"
bottom: "conv13/dw"
top: "conv13"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 1024
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv13/bn"
type: "BatchNorm"
bottom: "conv13"
top: "conv13"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv13/scale"
type: "Scale"
bottom: "conv13"
top: "conv13"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv13/relu"
type: "ReLU"
bottom: "conv13"
top: "conv13"
}
layer {
name: "conv14_1"
type: "Convolution"
bottom: "conv13"
top: "conv14_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 256
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv14_1/bn"
type: "BatchNorm"
bottom: "conv14_1"
top: "conv14_1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv14_1/scale"
type: "Scale"
bottom: "conv14_1"
top: "conv14_1"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv14_1/relu"
type: "ReLU"
bottom: "conv14_1"
top: "conv14_1"
}
layer {
name: "conv14_2"
type: "Convolution"
bottom: "conv14_1"
top: "conv14_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv14_2/bn"
type: "BatchNorm"
bottom: "conv14_2"
top: "conv14_2"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv14_2/scale"
type: "Scale"
bottom: "conv14_2"
top: "conv14_2"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv14_2/relu"
type: "ReLU"
bottom: "conv14_2"
top: "conv14_2"
}
layer {
name: "conv15_1"
type: "Convolution"
bottom: "conv14_2"
top: "conv15_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 128
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv15_1/bn"
type: "BatchNorm"
bottom: "conv15_1"
top: "conv15_1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv15_1/scale"
type: "Scale"
bottom: "conv15_1"
top: "conv15_1"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv15_1/relu"
type: "ReLU"
bottom: "conv15_1"
top: "conv15_1"
}
layer {
name: "conv15_2"
type: "Convolution"
bottom: "conv15_1"
top: "conv15_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv15_2/bn"
type: "BatchNorm"
bottom: "conv15_2"
top: "conv15_2"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv15_2/scale"
type: "Scale"
bottom: "conv15_2"
top: "conv15_2"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv15_2/relu"
type: "ReLU"
bottom: "conv15_2"
top: "conv15_2"
}
layer {
name: "conv16_1"
type: "Convolution"
bottom: "conv15_2"
top: "conv16_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 128
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv16_1/bn"
type: "BatchNorm"
bottom: "conv16_1"
top: "conv16_1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv16_1/scale"
type: "Scale"
bottom: "conv16_1"
top: "conv16_1"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv16_1/relu"
type: "ReLU"
bottom: "conv16_1"
top: "conv16_1"
}
layer {
name: "conv16_2"
type: "Convolution"
bottom: "conv16_1"
top: "conv16_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv16_2/bn"
type: "BatchNorm"
bottom: "conv16_2"
top: "conv16_2"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv16_2/scale"
type: "Scale"
bottom: "conv16_2"
top: "conv16_2"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv16_2/relu"
type: "ReLU"
bottom: "conv16_2"
top: "conv16_2"
}
layer {
name: "conv17_1"
type: "Convolution"
bottom: "conv16_2"
top: "conv17_1"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 64
bias_term: false
kernel_size: 1
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv17_1/bn"
type: "BatchNorm"
bottom: "conv17_1"
top: "conv17_1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv17_1/scale"
type: "Scale"
bottom: "conv17_1"
top: "conv17_1"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv17_1/relu"
type: "ReLU"
bottom: "conv17_1"
top: "conv17_1"
}
layer {
name: "conv17_2"
type: "Convolution"
bottom: "conv17_1"
top: "conv17_2"
param {
lr_mult: 1.0
decay_mult: 1.0
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
}
}
layer {
name: "conv17_2/bn"
type: "BatchNorm"
bottom: "conv17_2"
top: "conv17_2"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
}
layer {
name: "conv17_2/scale"
type: "Scale"
bottom: "conv17_2"
top: "conv17_2"
param {
lr_mult: 1.0
decay_mult: 0.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv17_2/relu"
type: "ReLU"
bottom: "conv17_2"
top: "conv17_2"
}
layer {
name: "conv11_mbox_loc"
type: "Convolution"
bottom: "conv11"
top: "conv11_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 12
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv11_mbox_loc_perm"
type: "Permute"
bottom: "conv11_mbox_loc"
top: "conv11_mbox_loc_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv11_mbox_loc_flat"
type: "Flatten"
bottom: "conv11_mbox_loc_perm"
top: "conv11_mbox_loc_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv11_mbox_conf_new"
type: "Convolution"
bottom: "conv11"
top: "conv11_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 6
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv11_mbox_conf_perm"
type: "Permute"
bottom: "conv11_mbox_conf"
top: "conv11_mbox_conf_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv11_mbox_conf_flat"
type: "Flatten"
bottom: "conv11_mbox_conf_perm"
top: "conv11_mbox_conf_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv11_mbox_priorbox"
type: "PriorBox"
bottom: "conv11"
bottom: "data"
top: "conv11_mbox_priorbox"
prior_box_param {
min_size: 60.0
aspect_ratio: 2.0
flip: true
clip: false
variance: 0.1
variance: 0.1
variance: 0.2
variance: 0.2
offset: 0.5
}
}
layer {
name: "conv13_mbox_loc"
type: "Convolution"
bottom: "conv13"
top: "conv13_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 24
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv13_mbox_loc_perm"
type: "Permute"
bottom: "conv13_mbox_loc"
top: "conv13_mbox_loc_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv13_mbox_loc_flat"
type: "Flatten"
bottom: "conv13_mbox_loc_perm"
top: "conv13_mbox_loc_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv13_mbox_conf_new"
type: "Convolution"
bottom: "conv13"
top: "conv13_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 12
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv13_mbox_conf_perm"
type: "Permute"
bottom: "conv13_mbox_conf"
top: "conv13_mbox_conf_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv13_mbox_conf_flat"
type: "Flatten"
bottom: "conv13_mbox_conf_perm"
top: "conv13_mbox_conf_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv13_mbox_priorbox"
type: "PriorBox"
bottom: "conv13"
bottom: "data"
top: "conv13_mbox_priorbox"
prior_box_param {
min_size: 105.0
max_size: 150.0
aspect_ratio: 2.0
aspect_ratio: 3.0
flip: true
clip: false
variance: 0.1
variance: 0.1
variance: 0.2
variance: 0.2
offset: 0.5
}
}
layer {
name: "conv14_2_mbox_loc"
type: "Convolution"
bottom: "conv14_2"
top: "conv14_2_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 24
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv14_2_mbox_loc_perm"
type: "Permute"
bottom: "conv14_2_mbox_loc"
top: "conv14_2_mbox_loc_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv14_2_mbox_loc_flat"
type: "Flatten"
bottom: "conv14_2_mbox_loc_perm"
top: "conv14_2_mbox_loc_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv14_2_mbox_conf_new"
type: "Convolution"
bottom: "conv14_2"
top: "conv14_2_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 12
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv14_2_mbox_conf_perm"
type: "Permute"
bottom: "conv14_2_mbox_conf"
top: "conv14_2_mbox_conf_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv14_2_mbox_conf_flat"
type: "Flatten"
bottom: "conv14_2_mbox_conf_perm"
top: "conv14_2_mbox_conf_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv14_2_mbox_priorbox"
type: "PriorBox"
bottom: "conv14_2"
bottom: "data"
top: "conv14_2_mbox_priorbox"
prior_box_param {
min_size: 150.0
max_size: 195.0
aspect_ratio: 2.0
aspect_ratio: 3.0
flip: true
clip: false
variance: 0.1
variance: 0.1
variance: 0.2
variance: 0.2
offset: 0.5
}
}
layer {
name: "conv15_2_mbox_loc"
type: "Convolution"
bottom: "conv15_2"
top: "conv15_2_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 24
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv15_2_mbox_loc_perm"
type: "Permute"
bottom: "conv15_2_mbox_loc"
top: "conv15_2_mbox_loc_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv15_2_mbox_loc_flat"
type: "Flatten"
bottom: "conv15_2_mbox_loc_perm"
top: "conv15_2_mbox_loc_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv15_2_mbox_conf_new"
type: "Convolution"
bottom: "conv15_2"
top: "conv15_2_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 12
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv15_2_mbox_conf_perm"
type: "Permute"
bottom: "conv15_2_mbox_conf"
top: "conv15_2_mbox_conf_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv15_2_mbox_conf_flat"
type: "Flatten"
bottom: "conv15_2_mbox_conf_perm"
top: "conv15_2_mbox_conf_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv15_2_mbox_priorbox"
type: "PriorBox"
bottom: "conv15_2"
bottom: "data"
top: "conv15_2_mbox_priorbox"
prior_box_param {
min_size: 195.0
max_size: 240.0
aspect_ratio: 2.0
aspect_ratio: 3.0
flip: true
clip: false
variance: 0.1
variance: 0.1
variance: 0.2
variance: 0.2
offset: 0.5
}
}
layer {
name: "conv16_2_mbox_loc"
type: "Convolution"
bottom: "conv16_2"
top: "conv16_2_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 24
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv16_2_mbox_loc_perm"
type: "Permute"
bottom: "conv16_2_mbox_loc"
top: "conv16_2_mbox_loc_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv16_2_mbox_loc_flat"
type: "Flatten"
bottom: "conv16_2_mbox_loc_perm"
top: "conv16_2_mbox_loc_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv16_2_mbox_conf_new"
type: "Convolution"
bottom: "conv16_2"
top: "conv16_2_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 12
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv16_2_mbox_conf_perm"
type: "Permute"
bottom: "conv16_2_mbox_conf"
top: "conv16_2_mbox_conf_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv16_2_mbox_conf_flat"
type: "Flatten"
bottom: "conv16_2_mbox_conf_perm"
top: "conv16_2_mbox_conf_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv16_2_mbox_priorbox"
type: "PriorBox"
bottom: "conv16_2"
bottom: "data"
top: "conv16_2_mbox_priorbox"
prior_box_param {
min_size: 240.0
max_size: 285.0
aspect_ratio: 2.0
aspect_ratio: 3.0
flip: true
clip: false
variance: 0.1
variance: 0.1
variance: 0.2
variance: 0.2
offset: 0.5
}
}
layer {
name: "conv17_2_mbox_loc"
type: "Convolution"
bottom: "conv17_2"
top: "conv17_2_mbox_loc"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 24
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv17_2_mbox_loc_perm"
type: "Permute"
bottom: "conv17_2_mbox_loc"
top: "conv17_2_mbox_loc_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv17_2_mbox_loc_flat"
type: "Flatten"
bottom: "conv17_2_mbox_loc_perm"
top: "conv17_2_mbox_loc_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv17_2_mbox_conf_new"
type: "Convolution"
bottom: "conv17_2"
top: "conv17_2_mbox_conf"
param {
lr_mult: 1.0
decay_mult: 1.0
}
param {
lr_mult: 2.0
decay_mult: 0.0
}
convolution_param {
num_output: 12
kernel_size: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0.0
}
}
}
layer {
name: "conv17_2_mbox_conf_perm"
type: "Permute"
bottom: "conv17_2_mbox_conf"
top: "conv17_2_mbox_conf_perm"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv17_2_mbox_conf_flat"
type: "Flatten"
bottom: "conv17_2_mbox_conf_perm"
top: "conv17_2_mbox_conf_flat"
flatten_param {
axis: 1
}
}
layer {
name: "conv17_2_mbox_priorbox"
type: "PriorBox"
bottom: "conv17_2"
bottom: "data"
top: "conv17_2_mbox_priorbox"
prior_box_param {
min_size: 285.0
max_size: 300.0
aspect_ratio: 2.0
aspect_ratio: 3.0
flip: true
clip: false
variance: 0.1
variance: 0.1
variance: 0.2
variance: 0.2
offset: 0.5
}
}
layer {
name: "mbox_loc"
type: "Concat"
bottom: "conv11_mbox_loc_flat"
bottom: "conv13_mbox_loc_flat"
bottom: "conv14_2_mbox_loc_flat"
bottom: "conv15_2_mbox_loc_flat"
bottom: "conv16_2_mbox_loc_flat"
bottom: "conv17_2_mbox_loc_flat"
top: "mbox_loc"
concat_param {
axis: 1
}
}
layer {
name: "mbox_conf"
type: "Concat"
bottom: "conv11_mbox_conf_flat"
bottom: "conv13_mbox_conf_flat"
bottom: "conv14_2_mbox_conf_flat"
bottom: "conv15_2_mbox_conf_flat"
bottom: "conv16_2_mbox_conf_flat"
bottom: "conv17_2_mbox_conf_flat"
top: "mbox_conf"
concat_param {
axis: 1
}
}
layer {
name: "mbox_priorbox"
type: "Concat"
bottom: "conv11_mbox_priorbox"
bottom: "conv13_mbox_priorbox"
bottom: "conv14_2_mbox_priorbox"
bottom: "conv15_2_mbox_priorbox"
bottom: "conv16_2_mbox_priorbox"
bottom: "conv17_2_mbox_priorbox"
top: "mbox_priorbox"
concat_param {
axis: 2
}
}
layer {
name: "mbox_conf_reshape"
type: "Reshape"
bottom: "mbox_conf"
top: "mbox_conf_reshape"
reshape_param {
shape {
dim: 0
dim: -1
dim: 2
}
}
}
layer {
name: "mbox_conf_softmax"
type: "Softmax"
bottom: "mbox_conf_reshape"
top: "mbox_conf_softmax"
softmax_param {
axis: 2
}
}
layer {
name: "mbox_conf_flatten"
type: "Flatten"
bottom: "mbox_conf_softmax"
top: "mbox_conf_flatten"
flatten_param {
axis: 1
}
}
layer {
name: "detection_out"
type: "DetectionOutput"
bottom: "mbox_loc"
bottom: "mbox_conf_flatten"
bottom: "mbox_priorbox"
top: "detection_out"
include {
phase: TEST
}
detection_output_param {
num_classes: 2
share_location: true
background_label_id: 0
nms_param {
nms_threshold: 0.45
top_k: 10
}
code_type: CENTER_SIZE
keep_top_k: 50
confidence_threshold: 0.25
}
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。