代码拉取完成,页面将自动刷新
function cnnTrain(cnn,images,labels,testimages,testlabels)
it = 0;
C = [];
epochs = cnn.numepochs;
minibatch = cnn.minibatch;
momIncrease = cnn.momIncrease;
mom = cnn.mom;
momentum = cnn.momentum;
alpha = cnn.alpha;
lambda = cnn.lambda;
m = length(labels);
numLayers = numel(cnn.layers);
for e = 1:epochs
% randomly permute indices of data for quick minibatch sampling
rp = randperm(m);
for s=1:minibatch:(m-minibatch+1)
it = it + 1;
% momentum enable
if it == momIncrease
mom = momentum;
end;
% mini-batch pick
mb_images = images(:,:,:,rp(s:s+minibatch-1));
mb_labels = labels(rp(s:s+minibatch-1));
numImages = size(mb_images,4);
%feedforward
%convolve and pooling
activations = mb_images;
for l = 1:numLayers
layer = cnn.layers{l};
if(strcmp(layer.type,'c'))%convolutional layer
activations = cnnConvolve4D(activations,layer.W,layer.b);
else
activations = cnnPool(layer.poolDim,activations);
end
layer.activations = activations;
cnn.layers{l} = layer;
end
%softmax
activations = reshape(activations,[],numImages);
probs = exp(bsxfun(@plus, cnn.Wd * activations, cnn.bd));
sumProbs = sum(probs, 1);
probs = bsxfun(@times, probs, 1 ./ sumProbs);
%% --------- Calculate Cost ----------
logp = log(probs);
index = sub2ind(size(logp),mb_labels',1:size(probs,2));
ceCost = -sum(logp(index));
wCost = 0;
for l = 1:numLayers
layer = cnn.layers{l};
if(strcmp(layer.type,'c'))
wCost = wCost + sum(layer.W(:) .^ 2);
end
end
wCost = lambda/2*(wCost + sum(cnn.Wd(:) .^ 2));
cost = ceCost+wCost; %ignore weight cost for now
%Backpropagation
%errors
%softmax layer
output = zeros(size(probs));
output(index) = 1;
DeltaSoftmax = (probs - output);
t = -DeltaSoftmax;
%last pooling layer
numFilters2 = cnn.layers{numLayers-1}.numFilters;
outputDim = size(cnn.layers{numLayers}.activations,1);
cnn.layers{numLayers}.delta = reshape(cnn.Wd' * DeltaSoftmax,outputDim,outputDim,numFilters2,numImages);
%other layers
for l = numLayers-1:-1:1
layer = cnn.layers{l};
if(strcmp(layer.type,'c'))% convolutional layer
numFilters = cnn.layers{l}.numFilters;
outputDim = size(cnn.layers{l+1}.activations,1);
poolDim = cnn.layers{l+1}.poolDim;
convDim = outputDim * poolDim;
DeltaPool = cnn.layers{l+1}.delta;
%unpool from last layer
DeltaUnpool = zeros(convDim,convDim,numFilters,numImages);
for imNum = 1:numImages
for FilterNum = 1:numFilters
unpool = DeltaPool(:,:,FilterNum,imNum);
DeltaUnpool(:,:,FilterNum,imNum) = kron(unpool,ones(poolDim))./(poolDim ^ 2);
end
end
activations = layer.activations;
DeltaConv = DeltaUnpool .* activations .* (1 - activations);
layer.delta = DeltaConv;
cnn.layers{l} = layer;
else
numFilters1 = cnn.layers{l-1}.numFilters;
numFilters2 = cnn.layers{l+1}.numFilters;
outputDim1 = size(layer.activations,1);
DeltaPooled = zeros(outputDim1,outputDim1,numFilters1,numImages);
DeltaConv = cnn.layers{l+1}.delta;
Wc = cnn.layers{l+1}.W;
for i = 1:numImages
for f1 = 1:numFilters1
for f2 = 1:numFilters2
DeltaPooled(:,:,f1,i) = DeltaPooled(:,:,f1,i) + convn(DeltaConv(:,:,f2,i),Wc(:,:,f1,f2),'full');
end
end
end
layer.delta = DeltaPooled;
cnn.layers{l} = layer;
end
end
%gradients
activationsPooled = cnn.layers{numLayers}.activations;
activationsPooled = reshape(activationsPooled,[],numImages);
Wd_grad = DeltaSoftmax*(activationsPooled)';
bd_grad = sum(DeltaSoftmax,2);
cnn.Wd_velocity = mom*cnn.Wd_velocity + alpha * (Wd_grad/minibatch+lambda*cnn.Wd);
cnn.bd_velocity = mom*cnn.bd_velocity + alpha * (bd_grad/minibatch);
cnn.Wd = cnn.Wd - cnn.Wd_velocity;
cnn.bd = cnn.bd - cnn.bd_velocity;
%other convolutions
for l = numLayers:-1:1
layer = cnn.layers{l};
if(strcmp(layer.type,'c'))%if this is a convolutional layer
numFilters2 = layer.numFilters;
if(l == 1)
numFilters1 = cnn.imageChannel;
activationsPooled = mb_images;
else
numFilters1 = cnn.layers{l-2}.numFilters;
activationsPooled = cnn.layers{l-1}.activations;
end
Wc_grad = zeros(size(layer.W));
bc_grad = zeros(size(layer.b));
DeltaConv = layer.delta;
for fil2 = 1:numFilters2
for fil1 = 1:numFilters1
for im = 1:numImages
Wc_grad(:,:,fil1,fil2) = Wc_grad(:,:,fil1,fil2) + conv2(activationsPooled(:,:,fil1,im),rot90(DeltaConv(:,:,fil2,im),2),'valid');
end
end
temp = DeltaConv(:,:,fil2,:);
bc_grad(fil2) = sum(temp(:));
end
layer.W_velocity = mom*layer.W_velocity + alpha*(Wc_grad/numImages+lambda*layer.W);
layer.b_velocity = mom*layer.b_velocity + alpha*(bc_grad/numImages);
layer.W = layer.W - layer.W_velocity;
layer.b = layer.b - layer.b_velocity;
end
cnn.layers{l} = layer;
end
fprintf('Epoch %d: Cost on iteration %d is %f\n',e,it,cost);
C(length(C)+1) = cost;
%break;
end
cnnTest(cnn,testimages,testlabels);
alpha = alpha/2.0;
end
plot(C);
end
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。