代码拉取完成,页面将自动刷新
//
// Created by hzy on 2024/2/7.
//
#include "CachingAllocatorConfig.h"
size_t CachingAllocatorConfig::max_split_size() { return instance().m_max_split_size; }
double CachingAllocatorConfig::garbage_collection_threshold() { return instance().m_garbage_collection_threshold; }
bool CachingAllocatorConfig::expandable_segments() { return instance().m_expandable_segments; }
double CachingAllocatorConfig::default_lc_threshold() { return instance().m_default_lc_threshold; }
bool CachingAllocatorConfig::open_memory_optimize() { return instance().m_open_memory_optimize; }
CachingAllocatorConfig::CachingAllocatorConfig()
: m_max_split_size(std::numeric_limits<size_t>::max()),
m_garbage_collection_threshold(0),
m_expandable_segments(true),
m_default_lc_threshold(0),
m_open_memory_optimize(false) {}
CachingAllocatorConfig& CachingAllocatorConfig::instance() {
static CachingAllocatorConfig *s_instance = ([]() {
auto inst = new CachingAllocatorConfig();
const char* env = getenv("PYTORCH_NPU_ALLOC_CONF");
inst->parseArgs(env);
return inst;
})();
return *s_instance;
}
void CachingAllocatorConfig::lexArgs(const char* env, std::vector<std::string>& config) {
std::vector<char> buf;
size_t env_length = strlen(env);
for (size_t i = 0; i < env_length; i++) {
if (env[i] == ',' || env[i] == ':' || env[i] == '[' || env[i] == ']') {
if (!buf.empty()) {
config.emplace_back(buf.begin(), buf.end());
buf.clear();
}
config.emplace_back(1, env[i]);
} else if (env[i] != ' ') {
buf.emplace_back(static_cast<char>(env[i]));
}
}
if (!buf.empty()) {
config.emplace_back(buf.begin(), buf.end());
}
}
void CachingAllocatorConfig::consumeToken(const std::vector<std::string>& config, size_t i, const char c) {
TORCH_CHECK(i < config.size() && config[i].compare(std::string(1, c)) == 0,
"Error parsing CachingAllocator settings, expected ", c);
}
size_t CachingAllocatorConfig::parseMaxSplitSize(const std::vector<std::string>& config, size_t i) {
consumeToken(config, ++i, ':');
if (++i < config.size()) {
size_t val1 = static_cast<size_t>(stoi(config[i]));
TORCH_CHECK(val1 > kLargeBuffer / (1024 * 1024), "CachingAllocator option max_split_size_mb too small, must be > ",
kLargeBuffer / (1024 * 1024));
val1 = std::max(val1, kLargeBuffer / (1024 * 1024));
val1 = std::min(val1, (std::numeric_limits<size_t>::max() / (1024 * 1024)));
m_max_split_size = val1 * 1024 * 1024;
} else {
TORCH_CHECK(false, "Error, expecting max_split_size_mb value");
}
return i;
}
size_t CachingAllocatorConfig::parseGarbageCollectionThreshold(const std::vector<std::string>& config, size_t i) {
consumeToken(config, ++i, ':');
if (++i < config.size()) {
double val1 = stod(config[i]);
TORCH_CHECK(val1 > 0, "garbage_collect_threshold too small, set it 0.0~1.0");
TORCH_CHECK(val1 < 1.0, "garbage_collect_threshold too big, set it 0.0~1.0");
m_garbage_collection_threshold = val1;
} else {
TORCH_CHECK(false, "Error, expecting garbage_collection_threshold value");
}
return i;
}
size_t CachingAllocatorConfig::parseExpandableSegments(const std::vector<std::string>& config, size_t i) {
consumeToken(config, ++i, ':');
if (++i < config.size()) {
TORCH_CHECK(i < config.size() && (config[i] == "True" || config[i] == "False"),
"Expected a single True/False argument for expandable_segments");
m_expandable_segments = (config[i] == "True");
void* ptr = nullptr;
auto status = c10_npu::acl::AclrtReserveMemAddress(&ptr, 512, 0, NULL, 1);
// NPU_CHECK_SUPPORTED_OR_ERROR(status);
// NPU_CHECK_ERROR(c10_npu::acl::AclrtReleaseMemAddress(ptr));
} else {
TORCH_CHECK(false, "Error, expecting expandable_segments value");
}
return i;
}
size_t CachingAllocatorConfig::parseDefaultLcThreshold(const std::vector<std::string> &config, size_t i) {
consumeToken(config, ++i, ':');
if (++i < config.size()) {
double val1 = std::stod(config[i]);
TORCH_CHECK(val1 >= 0, "default_lc_threshold too small, set it 0.0~INF");
m_default_lc_threshold = val1;
} else {
TORCH_CHECK(false, "Error, expecting default_lc_threshold value");
}
return i;
}
size_t CachingAllocatorConfig::parseOpenMemoryOptimize(const std::vector<std::string> &config, size_t i) {
consumeToken(config, ++i, ':');
if (++i < config.size()) {
if (config[i] == "true" || config[i] == "1") {
m_open_memory_optimize = true;
} else if (config[i] == "false" || config[i] == "0") {
m_open_memory_optimize = false;
} else {
TORCH_CHECK(false, "Error, open_memory_optimize should be true or false or 1 or 0");
}
} else {
TORCH_CHECK(false, "Error, expecting open_memory_optimize value");
}
return i;
}
void CachingAllocatorConfig::parseArgs(const char* env) {
// If empty, set the default values
m_max_split_size = std::numeric_limits<size_t>::max();
m_garbage_collection_threshold = 0;
m_default_lc_threshold = 0;
m_open_memory_optimize = false;
if (env == nullptr) {
return;
}
std::vector<std::string> config;
lexArgs(env, config);
for (size_t i = 0; i < config.size(); i++) {
if (config[i].compare("max_split_size_mb") == 0) {
i = parseMaxSplitSize(config, i);
} else if (config[i].compare("garbage_collection_threshold") == 0) {
i = parseGarbageCollectionThreshold(config, i);
} else if (config[i] == "expandable_segments") {
i = parseExpandableSegments(config, i);
} else if (config[i].compare("default_lc_threshold") == 0) {
i = parseDefaultLcThreshold(config, i);
} else if (config[i].compare("open_memory_optimize") == 0) {
i = parseOpenMemoryOptimize(config, i);
} else {
TORCH_CHECK(false, "Unrecognized CachingAllocator option: ", config[i]);
}
if (i + 1 < config.size()) {
consumeToken(config, ++i, ',');
}
}
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。