1 Star 1 Fork 2

高兴华/Camera_calibration

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
posture.py 5.85 KB
一键复制 编辑 原始数据 按行查看 历史
gaoxinghua01 提交于 2021-04-21 15:44 . add file
# - * - coding: utf - 8 - *-
import numpy as np
import math as m
def r_mat(f, w, k):
'计算R矩阵'
Rf = np.mat([[m.cos(f), 0, -m.sin(f)],
[0, 1, 0],
[m.sin(f), 0, m.cos(f)]])
Rw = np.mat([[1, 0, 0],
[0, m.cos(w), -m.sin(w)],
[0, m.sin(w), m.cos(w)]])
Rk = np.mat([[m.cos(k), -m.sin(k), 0],
[m.sin(k), m.cos(k), 0],
[0, 0, 1]])
# z y x
R = Rk * Rf * Rw
return R
def calc_xy(world, outer, inner, error, R):
X = [wo[0] for wo in world]
Y = [wo[1] for wo in world]
Z = [wo[2] for wo in world]
Xs, Ys, Zs = outer[0], outer[1], outer[2]
fx, fy, xo, yo = inner[0], inner[1], inner[2], inner[3]
k1, k2, p1, p2 = error[0], error[1], error[2], error[3]
calc_x = [0] * len(X)
calc_y = [0] * len(Y)
W = np.mat([Xs, Ys, Zs])
for i in range(len(X)):
world_pts = np.mat([X[i], Y[i], Z[i]])
# camera = R * world_pts + t mm
xy = R * world_pts.T + W.T
# 归一化
tmp_x, tmp_y = xy[0] / xy[2], xy[1] / xy[2]
r2 = tmp_x ** 2 + tmp_y ** 2
distorted_x = tmp_x * (1 + k1 * r2 + k2 * r2 ** 2) + 2 * p1 * tmp_x * tmp_y + p2 * (r2 + 2 * tmp_x ** 2)
distorted_y = tmp_y * (1 + k1 * r2 + k2 * r2 ** 2) + 2 * p2 * tmp_x * tmp_y + p1 * (r2 + 2 * tmp_y ** 2)
# distorted_x, distorted_y = 0, 0
# aloha, bate <=> dx, dy 查相机参数把
# 单位 pixel / mm
alpha, bate = 3000 / 50, 3000 / 50
calc_x[i] = xo + alpha * distorted_x - fx * ((R[0, 0] * (X[i] - Xs) + R[1, 0] * (Y[i] - Ys) + R[2, 0] * (Z[i] - Zs))
/ (R[0, 2] * (X[i] - Xs) + R[1, 2] * (Y[i] - Ys) + R[2, 2] * (Z[i] - Zs)))
calc_y[i] = yo + bate * distorted_y - fy * ((R[0, 1] * (X[i] - Xs) + R[1, 1] * (Y[i] - Ys) + R[2, 1] * (Z[i] - Zs))
/ (R[0, 2] * (X[i] - Xs) + R[1, 2] * (Y[i] - Ys) + R[2, 2] * (Z[i] - Zs)))
# 返回的是像素
return calc_x, calc_y
def a_parameter(image_pts, world_pts, outer, inner, R, param_num):
# 只计算外方位元素的偏导
fx, fy, xo, yo = inner[0], inner[1], inner[2], inner[3]
w, k = outer[4], outer[5]
x, y = image_pts[0], image_pts[1]
parameter = np.zeros((2, param_num))
minus = np.array([[world_pts[0] - outer[0]],
[world_pts[1] - outer[1]],
[world_pts[2] - outer[2]]])
mean = R.T * np.mat(minus)
# 6个外方位元素
parameter[0][0] = (R[0, 0] * fx + R[0, 2] * (x - xo)) / mean[2]
parameter[0][1] = (R[1, 0] * fx + R[1, 2] * (x - xo)) / mean[2]
parameter[0][2] = (R[2, 0] * fx + R[2, 2] * (x - xo)) / mean[2]
parameter[1][0] = (R[0, 1] * fy + R[0, 2] * (y - yo)) / mean[2]
parameter[1][1] = (R[1, 1] * fy + R[1, 2] * (y - yo)) / mean[2]
parameter[1][2] = (R[2, 1] * fy + R[2, 2] * (y - yo)) / mean[2]
parameter[0][3] = (y - yo) * m.sin(w) - (
((x - xo) / fx) * ((x - xo) * m.cos(k) - (y - yo) * m.sin(k)) + fx * m.cos(k)) * m.cos(w)
parameter[0][4] = -fx * m.sin(k) - ((x - xo) / fx) * ((x - xo) * m.sin(k) + (y - yo) * m.cos(k))
parameter[0][5] = y - yo
parameter[1][3] = -(x - xo) * m.sin(w) - (
((y - yo) / fy) * ((x - xo) * m.cos(k) - (y - yo) * m.sin(k)) - fy * m.cos(k)) * m.cos(w)
parameter[1][4] = -fy * m.cos(k) - ((y - yo) / fy) * ((x - xo) * m.sin(k) + (y - yo) * m.cos(k))
parameter[1][5] = -(x - xo)
return parameter
def intersection(image_pts, world_pts, inner_element, distort_element, init_value, times=10, thresh=0.1):
# 6: 迭代内外元素
param_num = 6
n = len(image_pts)
fai, omiga, kaba = init_value[3], init_value[4], init_value[5]
Xos, Yos, Zos = init_value[0], init_value[1], init_value[2]
fx, fy, xo, yo = inner_element[0], inner_element[1], inner_element[2], inner_element[3]
k1, k2, p1, p2 = distort_element[0], distort_element[1], distort_element[2], distort_element[3]
# 误差 and A矩阵
L = np.mat(np.zeros((2 * n, 1)))
A = np.mat(np.zeros((2 * n, param_num)))
dx = dy = dz = do = dk = df = 100
epoch = 0
while (abs(do) > thresh) | (abs(dk) > thresh) | (abs(df) > thresh) | (abs(dx) > thresh) | (abs(dy) > thresh) | (abs(dz) > thresh):
error = [k1, k2, p1, p2]
outer, inner = [Xos, Yos, Zos, fai, omiga, kaba], [fx, fy, xo, yo]
R = r_mat(fai, omiga, kaba)
calc_x, calc_y = calc_xy(world_pts, outer, inner, error, R)
for i in range(n):
# 像素点误差 用像素误差太大 一定要用mm
L[2 * i] = image_pts[i][0] - calc_x[i]
L[2 * i + 1] = image_pts[i][1] - calc_y[i]
for i in range(n):
A[2 * i:2 * i + 2, :] = a_parameter(image_pts[i], world_pts[i], outer, inner, R, param_num)
# 计算改正数
X = (A.T * A).I * A.T * L
Xos, Yos, Zos, fai, omiga, kaba = Xos + X[0, 0], Yos + X[1, 0], Zos + X[2, 0], \
fai + X[3, 0], omiga + X[4, 0], kaba + X[5, 0]
# 变成角度
for i in range(3, 6):
X[i, 0] = X[i, 0] * 180 / m.pi
dx, dy, dz, do, dk, df = X[0, 0], X[1, 0], X[2, 0], X[3, 0], X[4, 0], X[5, 0]
epoch += 1
if epoch <= times:
print("第 %d 次迭代:Xs=%f,Ys=%f,Zs=%f,fai=%f,omiga=%f,kaba=%f" %
(epoch, Xos, Yos, Zos, fai * 180 / m.pi, omiga*180/m.pi, kaba*180/m.pi))
else:
print("后方交汇不收敛")
break
if epoch < times:
print("后方交汇迭代收敛")
return [Xos, Yos, Zos, fai * 180 / m.pi, omiga*180/m.pi, kaba*180/m.pi]
def usage():
print("Usage:")
print("from posture import intersection")
print("intersection()")
if __name__ == '__main__':
# 不使用科学记数法
np.set_printoptions(suppress=True)
print("-------")
usage()
print("-------")
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/happy_china/camera_calibration.git
[email protected]:happy_china/camera_calibration.git
happy_china
camera_calibration
Camera_calibration
master

搜索帮助