代码拉取完成,页面将自动刷新
同步操作将从 wangrong/fourier_neural_operator 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
from utilities3 import *
import operator
from functools import reduce
from functools import partial
from timeit import default_timer
import scipy.io
torch.manual_seed(0)
np.random.seed(0)
################################################################
# 3d lowrank layers
################################################################
class LowRank2d(nn.Module):
def __init__(self, in_channels, out_channels, n, ker_width, rank):
super(LowRank2d, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.n = n
self.rank = rank
self.phi = DenseNet([in_channels, ker_width, in_channels*out_channels*rank], torch.nn.ReLU)
self.psi = DenseNet([in_channels, ker_width, in_channels*out_channels*rank], torch.nn.ReLU)
def forward(self, v):
batch_size = v.shape[0]
phi_eval = self.phi(v).reshape(batch_size, self.n, self.out_channels, self.in_channels, self.rank)
psi_eval = self.psi(v).reshape(batch_size, self.n, self.out_channels, self.in_channels, self.rank)
# print(psi_eval.shape, v.shape, phi_eval.shape)
v = torch.einsum('bnoir,bni,bmoir->bmo',psi_eval, v, phi_eval)
return v
class MyNet(torch.nn.Module):
def __init__(self, n, width=16, ker_width=256, rank=16):
super(MyNet, self).__init__()
self.n = n
self.width = width
self.ker_width = ker_width
self.rank = rank
self.fc0 = nn.Linear(13, self.width)
self.conv0 = LowRank2d(width, width, n, ker_width, rank)
self.conv1 = LowRank2d(width, width, n, ker_width, rank)
self.conv2 = LowRank2d(width, width, n, ker_width, rank)
self.conv3 = LowRank2d(width, width, n, ker_width, rank)
self.w0 = nn.Linear(self.width, self.width)
self.w1 = nn.Linear(self.width, self.width)
self.w2 = nn.Linear(self.width, self.width)
self.w3 = nn.Linear(self.width, self.width)
self.bn0 = torch.nn.BatchNorm1d(self.width)
self.bn1 = torch.nn.BatchNorm1d(self.width)
self.bn2 = torch.nn.BatchNorm1d(self.width)
self.bn3 = torch.nn.BatchNorm1d(self.width)
self.fc1 = nn.Linear(self.width, 128)
self.fc2 = nn.Linear(128, 1)
def forward(self, x):
batch_size = x.shape[0]
size_x, size_y, size_z = x.shape[1], x.shape[2], x.shape[3]
x = x.view(batch_size, size_x*size_y*size_z, -1)
x = self.fc0(x)
x1 = self.conv0(x)
x2 = self.w0(x)
x = x1 + x2
x = self.bn0(x.reshape(-1, self.width)).view(batch_size, size_x*size_y*size_z, self.width)
x = F.relu(x)
x1 = self.conv1(x)
x2 = self.w1(x)
x = x1 + x2
x = self.bn1(x.reshape(-1, self.width)).view(batch_size, size_x*size_y*size_z, self.width)
x = F.relu(x)
x1 = self.conv2(x)
x2 = self.w2(x)
x = x1 + x2
x = self.bn2(x.reshape(-1, self.width)).view(batch_size, size_x*size_y*size_z, self.width)
x = F.relu(x)
x1 = self.conv3(x)
x2 = self.w3(x)
x = x1 + x2
x = self.bn3(x.reshape(-1, self.width)).view(batch_size, size_x*size_y*size_z, self.width)
x = self.fc1(x)
x = F.relu(x)
x = self.fc2(x)
x = x.view(batch_size, size_x, size_y, size_z)
return x
class Net2d(nn.Module):
def __init__(self, width=8, ker_width=128, rank=4):
super(Net2d, self).__init__()
self.conv1 = MyNet(n=64*64*40, width=width, ker_width=ker_width, rank=rank)
def forward(self, x):
x = self.conv1(x)
return x
def count_params(self):
c = 0
for p in self.parameters():
c += reduce(operator.mul, list(p.size()))
return c
################################################################
# configs
################################################################
# TRAIN_PATH = 'data/ns_data_V10000_N1200_T20.mat'
# TEST_PATH = 'data/ns_data_V10000_N1200_T20.mat'
# TRAIN_PATH = 'data/ns_data_V1000_N1000_train.mat'
# TEST_PATH = 'data/ns_data_V1000_N1000_train_2.mat'
# TRAIN_PATH = 'data/ns_data_V1000_N5000.mat'
# TEST_PATH = 'data/ns_data_V1000_N5000.mat'
TRAIN_PATH = 'data/ns_data_V100_N1000_T50_1.mat'
TEST_PATH = 'data/ns_data_V100_N1000_T50_2.mat'
ntrain = 1000
ntest = 200
batch_size = 2
batch_size2 = batch_size
epochs = 500
learning_rate = 0.0025
scheduler_step = 100
scheduler_gamma = 0.5
print(epochs, learning_rate, scheduler_step, scheduler_gamma)
path = 'ns_lowrank_V100_T40_N'+str(ntrain)+'_ep' + str(epochs)
path_model = 'model/'+path
path_train_err = 'results/'+path+'train.txt'
path_test_err = 'results/'+path+'test.txt'
path_image = 'image/'+path
runtime = np.zeros(2, )
t1 = default_timer()
sub = 1
S = 64
T_in = 10
T = 40
################################################################
# load data
################################################################
reader = MatReader(TRAIN_PATH)
train_a = reader.read_field('u')[:ntrain,::sub,::sub,:T_in]
train_u = reader.read_field('u')[:ntrain,::sub,::sub,T_in:T+T_in]
reader = MatReader(TEST_PATH)
test_a = reader.read_field('u')[-ntest:,::sub,::sub,:T_in]
test_u = reader.read_field('u')[-ntest:,::sub,::sub,T_in:T+T_in]
print(train_u.shape)
print(test_u.shape)
assert (S == train_u.shape[-2])
assert (T == train_u.shape[-1])
a_normalizer = UnitGaussianNormalizer(train_a)
train_a = a_normalizer.encode(train_a)
test_a = a_normalizer.encode(test_a)
y_normalizer = UnitGaussianNormalizer(train_u)
train_u = y_normalizer.encode(train_u)
train_a = train_a.reshape(ntrain,S,S,1,T_in).repeat([1,1,1,T,1])
test_a = test_a.reshape(ntest,S,S,1,T_in).repeat([1,1,1,T,1])
gridx = torch.tensor(np.linspace(0, 1, S), dtype=torch.float)
gridx = gridx.reshape(1, S, 1, 1, 1).repeat([1, 1, S, T, 1])
gridy = torch.tensor(np.linspace(0, 1, S), dtype=torch.float)
gridy = gridy.reshape(1, 1, S, 1, 1).repeat([1, S, 1, T, 1])
gridt = torch.tensor(np.linspace(0, 1, T+1)[1:], dtype=torch.float)
gridt = gridt.reshape(1, 1, 1, T, 1).repeat([1, S, S, 1, 1])
train_a = torch.cat((gridx.repeat([ntrain,1,1,1,1]), gridy.repeat([ntrain,1,1,1,1]),
gridt.repeat([ntrain,1,1,1,1]), train_a), dim=-1)
test_a = torch.cat((gridx.repeat([ntest,1,1,1,1]), gridy.repeat([ntest,1,1,1,1]),
gridt.repeat([ntest,1,1,1,1]), test_a), dim=-1)
train_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(train_a, train_u), batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(test_a, test_u), batch_size=batch_size, shuffle=False)
t2 = default_timer()
print('preprocessing finished, time used:', t2-t1)
device = torch.device('cuda')
################################################################
# training and evaluation
################################################################
model = Net2d().cuda()
# model = torch.load('model/ns_fourier_V100_N1000_ep100_m8_w20')
print(model.count_params())
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=1e-4)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=scheduler_step, gamma=scheduler_gamma)
myloss = LpLoss(size_average=False)
y_normalizer.cuda()
for ep in range(epochs):
model.train()
t1 = default_timer()
train_mse = 0
train_l2 = 0
for x, y in train_loader:
x, y = x.cuda(), y.cuda()
optimizer.zero_grad()
out = model(x)
mse = F.mse_loss(out, y, reduction='mean')
# mse.backward()
y = y_normalizer.decode(y)
out = y_normalizer.decode(out)
l2 = myloss(out.view(batch_size, -1), y.view(batch_size, -1))
l2.backward()
optimizer.step()
train_mse += mse.item()
train_l2 += l2.item()
scheduler.step()
model.eval()
test_l2 = 0.0
with torch.no_grad():
for x, y in test_loader:
x, y = x.cuda(), y.cuda()
out = model(x)
out = y_normalizer.decode(out)
test_l2 += myloss(out.view(batch_size, -1), y.view(batch_size, -1)).item()
train_mse /= len(train_loader)
train_l2 /= ntrain
test_l2 /= ntest
t2 = default_timer()
print(ep, t2-t1, train_mse, train_l2, test_l2)
# torch.save(model, path_model)
pred = torch.zeros(test_u.shape)
index = 0
test_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(test_a, test_u), batch_size=1, shuffle=False)
with torch.no_grad():
for x, y in test_loader:
test_l2 = 0;
x, y = x.cuda(), y.cuda()
out = model(x)
out = y_normalizer.decode(out)
pred[index] = out
test_l2 += myloss(out.view(1, -1), y.view(1, -1)).item()
print(index, test_l2)
index = index + 1
# scipy.io.savemat('pred/'+path+'.mat', mdict={'pred': pred.cpu().numpy()})
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。