代码拉取完成,页面将自动刷新
同步操作将从 wangrong/fourier_neural_operator 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
"""
@author: Zongyi Li
This file is the Fourier Neural Operator for 3D problem such as the Navier-Stokes equation discussed in Section 5.3 in the [paper](https://arxiv.org/pdf/2010.08895.pdf),
which takes the 2D spatial + 1D temporal equation directly as a 3D problem
"""
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
from utilities3 import *
import operator
from functools import reduce
from functools import partial
from timeit import default_timer
from Adam import Adam
torch.manual_seed(0)
np.random.seed(0)
################################################################
# 3d fourier layers
################################################################
class SpectralConv3d(nn.Module):
def __init__(self, in_channels, out_channels, modes1, modes2, modes3):
super(SpectralConv3d, self).__init__()
"""
3D Fourier layer. It does FFT, linear transform, and Inverse FFT.
"""
self.in_channels = in_channels
self.out_channels = out_channels
self.modes1 = modes1 #Number of Fourier modes to multiply, at most floor(N/2) + 1
self.modes2 = modes2
self.modes3 = modes3
self.scale = (1 / (in_channels * out_channels))
self.weights1 = nn.Parameter(self.scale * torch.rand(in_channels, out_channels, self.modes1, self.modes2, self.modes3, dtype=torch.cfloat))
self.weights2 = nn.Parameter(self.scale * torch.rand(in_channels, out_channels, self.modes1, self.modes2, self.modes3, dtype=torch.cfloat))
self.weights3 = nn.Parameter(self.scale * torch.rand(in_channels, out_channels, self.modes1, self.modes2, self.modes3, dtype=torch.cfloat))
self.weights4 = nn.Parameter(self.scale * torch.rand(in_channels, out_channels, self.modes1, self.modes2, self.modes3, dtype=torch.cfloat))
# Complex multiplication
def compl_mul3d(self, input, weights):
# (batch, in_channel, x,y,t ), (in_channel, out_channel, x,y,t) -> (batch, out_channel, x,y,t)
return torch.einsum("bixyz,ioxyz->boxyz", input, weights)
def forward(self, x):
batchsize = x.shape[0]
#Compute Fourier coeffcients up to factor of e^(- something constant)
x_ft = torch.fft.rfftn(x, dim=[-3,-2,-1])
# Multiply relevant Fourier modes
out_ft = torch.zeros(batchsize, self.out_channels, x.size(-3), x.size(-2), x.size(-1)//2 + 1, dtype=torch.cfloat, device=x.device)
out_ft[:, :, :self.modes1, :self.modes2, :self.modes3] = \
self.compl_mul3d(x_ft[:, :, :self.modes1, :self.modes2, :self.modes3], self.weights1)
out_ft[:, :, -self.modes1:, :self.modes2, :self.modes3] = \
self.compl_mul3d(x_ft[:, :, -self.modes1:, :self.modes2, :self.modes3], self.weights2)
out_ft[:, :, :self.modes1, -self.modes2:, :self.modes3] = \
self.compl_mul3d(x_ft[:, :, :self.modes1, -self.modes2:, :self.modes3], self.weights3)
out_ft[:, :, -self.modes1:, -self.modes2:, :self.modes3] = \
self.compl_mul3d(x_ft[:, :, -self.modes1:, -self.modes2:, :self.modes3], self.weights4)
#Return to physical space
x = torch.fft.irfftn(out_ft, s=(x.size(-3), x.size(-2), x.size(-1)))
return x
class FNO3d(nn.Module):
def __init__(self, modes1, modes2, modes3, width):
super(FNO3d, self).__init__()
"""
The overall network. It contains 4 layers of the Fourier layer.
1. Lift the input to the desire channel dimension by self.fc0 .
2. 4 layers of the integral operators u' = (W + K)(u).
W defined by self.w; K defined by self.conv .
3. Project from the channel space to the output space by self.fc1 and self.fc2 .
input: the solution of the first 10 timesteps + 3 locations (u(1, x, y), ..., u(10, x, y), x, y, t). It's a constant function in time, except for the last index.
input shape: (batchsize, x=64, y=64, t=40, c=13)
output: the solution of the next 40 timesteps
output shape: (batchsize, x=64, y=64, t=40, c=1)
"""
self.modes1 = modes1
self.modes2 = modes2
self.modes3 = modes3
self.width = width
self.padding = 6 # pad the domain if input is non-periodic
self.fc0 = nn.Linear(13, self.width)
# input channel is 12: the solution of the first 10 timesteps + 3 locations (u(1, x, y), ..., u(10, x, y), x, y, t)
self.conv0 = SpectralConv3d(self.width, self.width, self.modes1, self.modes2, self.modes3)
self.conv1 = SpectralConv3d(self.width, self.width, self.modes1, self.modes2, self.modes3)
self.conv2 = SpectralConv3d(self.width, self.width, self.modes1, self.modes2, self.modes3)
self.conv3 = SpectralConv3d(self.width, self.width, self.modes1, self.modes2, self.modes3)
self.w0 = nn.Conv3d(self.width, self.width, 1)
self.w1 = nn.Conv3d(self.width, self.width, 1)
self.w2 = nn.Conv3d(self.width, self.width, 1)
self.w3 = nn.Conv3d(self.width, self.width, 1)
self.bn0 = torch.nn.BatchNorm3d(self.width)
self.bn1 = torch.nn.BatchNorm3d(self.width)
self.bn2 = torch.nn.BatchNorm3d(self.width)
self.bn3 = torch.nn.BatchNorm3d(self.width)
self.fc1 = nn.Linear(self.width, 128)
self.fc2 = nn.Linear(128, 1)
def forward(self, x):
grid = self.get_grid(x.shape, x.device)
x = torch.cat((x, grid), dim=-1)
x = self.fc0(x)
x = x.permute(0, 4, 1, 2, 3)
x = F.pad(x, [0,self.padding]) # pad the domain if input is non-periodic
x1 = self.conv0(x)
x2 = self.w0(x)
x = x1 + x2
x = F.gelu(x)
x1 = self.conv1(x)
x2 = self.w1(x)
x = x1 + x2
x = F.gelu(x)
x1 = self.conv2(x)
x2 = self.w2(x)
x = x1 + x2
x = F.gelu(x)
x1 = self.conv3(x)
x2 = self.w3(x)
x = x1 + x2
x = x[..., :-self.padding]
x = x.permute(0, 2, 3, 4, 1) # pad the domain if input is non-periodic
x = self.fc1(x)
x = F.gelu(x)
x = self.fc2(x)
return x
def get_grid(self, shape, device):
batchsize, size_x, size_y, size_z = shape[0], shape[1], shape[2], shape[3]
gridx = torch.tensor(np.linspace(0, 1, size_x), dtype=torch.float)
gridx = gridx.reshape(1, size_x, 1, 1, 1).repeat([batchsize, 1, size_y, size_z, 1])
gridy = torch.tensor(np.linspace(0, 1, size_y), dtype=torch.float)
gridy = gridy.reshape(1, 1, size_y, 1, 1).repeat([batchsize, size_x, 1, size_z, 1])
gridz = torch.tensor(np.linspace(0, 1, size_z), dtype=torch.float)
gridz = gridz.reshape(1, 1, 1, size_z, 1).repeat([batchsize, size_x, size_y, 1, 1])
return torch.cat((gridx, gridy, gridz), dim=-1).to(device)
################################################################
# configs
################################################################
TRAIN_PATH = 'data/ns_data_V100_N1000_T50_1.mat'
TEST_PATH = 'data/ns_data_V100_N1000_T50_2.mat'
ntrain = 1000
ntest = 200
modes = 8
width = 20
batch_size = 10
batch_size2 = batch_size
epochs = 500
learning_rate = 0.001
scheduler_step = 100
scheduler_gamma = 0.5
print(epochs, learning_rate, scheduler_step, scheduler_gamma)
path = 'test'
# path = 'ns_fourier_V100_N'+str(ntrain)+'_ep' + str(epochs) + '_m' + str(modes) + '_w' + str(width)
path_model = 'model/'+path
path_train_err = 'results/'+path+'train.txt'
path_test_err = 'results/'+path+'test.txt'
path_image = 'image/'+path
runtime = np.zeros(2, )
t1 = default_timer()
sub = 1
S = 64 // sub
T_in = 10
T = 40
################################################################
# load data
################################################################
reader = MatReader(TRAIN_PATH)
train_a = reader.read_field('u')[:ntrain,::sub,::sub,:T_in]
train_u = reader.read_field('u')[:ntrain,::sub,::sub,T_in:T+T_in]
reader = MatReader(TEST_PATH)
test_a = reader.read_field('u')[-ntest:,::sub,::sub,:T_in]
test_u = reader.read_field('u')[-ntest:,::sub,::sub,T_in:T+T_in]
print(train_u.shape)
print(test_u.shape)
assert (S == train_u.shape[-2])
assert (T == train_u.shape[-1])
a_normalizer = UnitGaussianNormalizer(train_a)
train_a = a_normalizer.encode(train_a)
test_a = a_normalizer.encode(test_a)
y_normalizer = UnitGaussianNormalizer(train_u)
train_u = y_normalizer.encode(train_u)
train_a = train_a.reshape(ntrain,S,S,1,T_in).repeat([1,1,1,T,1])
test_a = test_a.reshape(ntest,S,S,1,T_in).repeat([1,1,1,T,1])
train_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(train_a, train_u), batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(test_a, test_u), batch_size=batch_size, shuffle=False)
t2 = default_timer()
print('preprocessing finished, time used:', t2-t1)
device = torch.device('cuda')
################################################################
# training and evaluation
################################################################
model = FNO3d(modes, modes, modes, width).cuda()
# model = torch.load('model/ns_fourier_V100_N1000_ep100_m8_w20')
print(count_params(model))
optimizer = Adam(model.parameters(), lr=learning_rate, weight_decay=1e-4)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=scheduler_step, gamma=scheduler_gamma)
myloss = LpLoss(size_average=False)
y_normalizer.cuda()
for ep in range(epochs):
model.train()
t1 = default_timer()
train_mse = 0
train_l2 = 0
for x, y in train_loader:
x, y = x.cuda(), y.cuda()
optimizer.zero_grad()
out = model(x).view(batch_size, S, S, T)
mse = F.mse_loss(out, y, reduction='mean')
# mse.backward()
y = y_normalizer.decode(y)
out = y_normalizer.decode(out)
l2 = myloss(out.view(batch_size, -1), y.view(batch_size, -1))
l2.backward()
optimizer.step()
train_mse += mse.item()
train_l2 += l2.item()
scheduler.step()
model.eval()
test_l2 = 0.0
with torch.no_grad():
for x, y in test_loader:
x, y = x.cuda(), y.cuda()
out = model(x).view(batch_size, S, S, T)
out = y_normalizer.decode(out)
test_l2 += myloss(out.view(batch_size, -1), y.view(batch_size, -1)).item()
train_mse /= len(train_loader)
train_l2 /= ntrain
test_l2 /= ntest
t2 = default_timer()
print(ep, t2-t1, train_mse, train_l2, test_l2)
# torch.save(model, path_model)
pred = torch.zeros(test_u.shape)
index = 0
test_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(test_a, test_u), batch_size=1, shuffle=False)
with torch.no_grad():
for x, y in test_loader:
test_l2 = 0
x, y = x.cuda(), y.cuda()
out = model(x)
out = y_normalizer.decode(out)
pred[index] = out
test_l2 += myloss(out.view(1, -1), y.view(1, -1)).item()
print(index, test_l2)
index = index + 1
scipy.io.savemat('pred/'+path+'.mat', mdict={'pred': pred.cpu().numpy()})
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。