代码拉取完成,页面将自动刷新
同步操作将从 wangrong/fourier_neural_operator 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
"""
@author: Zongyi Li
This file is the Fourier Neural Operator for 2D problem such as the Navier-Stokes equation discussed in Section 5.3 in the [paper](https://arxiv.org/pdf/2010.08895.pdf),
which uses a recurrent structure to propagates in time.
"""
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
from utilities3 import *
import operator
from functools import reduce
from functools import partial
from timeit import default_timer
from Adam import Adam
torch.manual_seed(0)
np.random.seed(0)
################################################################
# fourier layer
################################################################
class SpectralConv2d_fast(nn.Module):
def __init__(self, in_channels, out_channels, modes1, modes2):
super(SpectralConv2d_fast, self).__init__()
"""
2D Fourier layer. It does FFT, linear transform, and Inverse FFT.
"""
self.in_channels = in_channels
self.out_channels = out_channels
self.modes1 = modes1 #Number of Fourier modes to multiply, at most floor(N/2) + 1
self.modes2 = modes2
self.scale = (1 / (in_channels * out_channels))
self.weights1 = nn.Parameter(self.scale * torch.rand(in_channels, out_channels, self.modes1, self.modes2, dtype=torch.cfloat))
self.weights2 = nn.Parameter(self.scale * torch.rand(in_channels, out_channels, self.modes1, self.modes2, dtype=torch.cfloat))
# Complex multiplication
def compl_mul2d(self, input, weights):
# (batch, in_channel, x,y ), (in_channel, out_channel, x,y) -> (batch, out_channel, x,y)
return torch.einsum("bixy,ioxy->boxy", input, weights)
def forward(self, x):
batchsize = x.shape[0]
#Compute Fourier coeffcients up to factor of e^(- something constant)
x_ft = torch.fft.rfft2(x)
# Multiply relevant Fourier modes
out_ft = torch.zeros(batchsize, self.out_channels, x.size(-2), x.size(-1)//2 + 1, dtype=torch.cfloat, device=x.device)
out_ft[:, :, :self.modes1, :self.modes2] = \
self.compl_mul2d(x_ft[:, :, :self.modes1, :self.modes2], self.weights1)
out_ft[:, :, -self.modes1:, :self.modes2] = \
self.compl_mul2d(x_ft[:, :, -self.modes1:, :self.modes2], self.weights2)
#Return to physical space
x = torch.fft.irfft2(out_ft, s=(x.size(-2), x.size(-1)))
return x
class FNO2d(nn.Module):
def __init__(self, modes1, modes2, width):
super(FNO2d, self).__init__()
"""
The overall network. It contains 4 layers of the Fourier layer.
1. Lift the input to the desire channel dimension by self.fc0 .
2. 4 layers of the integral operators u' = (W + K)(u).
W defined by self.w; K defined by self.conv .
3. Project from the channel space to the output space by self.fc1 and self.fc2 .
input: the solution of the previous 10 timesteps + 2 locations (u(t-10, x, y), ..., u(t-1, x, y), x, y)
input shape: (batchsize, x=64, y=64, c=12)
output: the solution of the next timestep
output shape: (batchsize, x=64, y=64, c=1)
"""
self.modes1 = modes1
self.modes2 = modes2
self.width = width
self.padding = 2 # pad the domain if input is non-periodic
self.fc0 = nn.Linear(12, self.width)
# input channel is 12: the solution of the previous 10 timesteps + 2 locations (u(t-10, x, y), ..., u(t-1, x, y), x, y)
self.conv0 = SpectralConv2d_fast(self.width, self.width, self.modes1, self.modes2)
self.conv1 = SpectralConv2d_fast(self.width, self.width, self.modes1, self.modes2)
self.conv2 = SpectralConv2d_fast(self.width, self.width, self.modes1, self.modes2)
self.conv3 = SpectralConv2d_fast(self.width, self.width, self.modes1, self.modes2)
self.w0 = nn.Conv2d(self.width, self.width, 1)
self.w1 = nn.Conv2d(self.width, self.width, 1)
self.w2 = nn.Conv2d(self.width, self.width, 1)
self.w3 = nn.Conv2d(self.width, self.width, 1)
self.bn0 = torch.nn.BatchNorm2d(self.width)
self.bn1 = torch.nn.BatchNorm2d(self.width)
self.bn2 = torch.nn.BatchNorm2d(self.width)
self.bn3 = torch.nn.BatchNorm2d(self.width)
self.fc1 = nn.Linear(self.width, 128)
self.fc2 = nn.Linear(128, 1)
def forward(self, x):
grid = self.get_grid(x.shape, x.device)
x = torch.cat((x, grid), dim=-1)
x = self.fc0(x)
x = x.permute(0, 3, 1, 2)
# x = F.pad(x, [0,self.padding, 0,self.padding]) # pad the domain if input is non-periodic
x1 = self.conv0(x)
x2 = self.w0(x)
x = x1 + x2
x = F.gelu(x)
x1 = self.conv1(x)
x2 = self.w1(x)
x = x1 + x2
x = F.gelu(x)
x1 = self.conv2(x)
x2 = self.w2(x)
x = x1 + x2
x = F.gelu(x)
x1 = self.conv3(x)
x2 = self.w3(x)
x = x1 + x2
# x = x[..., :-self.padding, :-self.padding] # pad the domain if input is non-periodic
x = x.permute(0, 2, 3, 1)
x = self.fc1(x)
x = F.gelu(x)
x = self.fc2(x)
return x
def get_grid(self, shape, device):
batchsize, size_x, size_y = shape[0], shape[1], shape[2]
gridx = torch.tensor(np.linspace(0, 1, size_x), dtype=torch.float)
gridx = gridx.reshape(1, size_x, 1, 1).repeat([batchsize, 1, size_y, 1])
gridy = torch.tensor(np.linspace(0, 1, size_y), dtype=torch.float)
gridy = gridy.reshape(1, 1, size_y, 1).repeat([batchsize, size_x, 1, 1])
return torch.cat((gridx, gridy), dim=-1).to(device)
################################################################
# configs
################################################################
TRAIN_PATH = 'data/ns_data_V100_N1000_T50_1.mat'
TEST_PATH = 'data/ns_data_V100_N1000_T50_2.mat'
ntrain = 1000
ntest = 200
modes = 12
width = 20
batch_size = 20
batch_size2 = batch_size
epochs = 500
learning_rate = 0.001
scheduler_step = 100
scheduler_gamma = 0.5
print(epochs, learning_rate, scheduler_step, scheduler_gamma)
path = 'ns_fourier_2d_rnn_V10000_T20_N'+str(ntrain)+'_ep' + str(epochs) + '_m' + str(modes) + '_w' + str(width)
path_model = 'model/'+path
path_train_err = 'results/'+path+'train.txt'
path_test_err = 'results/'+path+'test.txt'
path_image = 'image/'+path
sub = 1
S = 64
T_in = 10
T = 10
step = 1
################################################################
# load data
################################################################
reader = MatReader(TRAIN_PATH)
train_a = reader.read_field('u')[:ntrain,::sub,::sub,:T_in]
train_u = reader.read_field('u')[:ntrain,::sub,::sub,T_in:T+T_in]
reader = MatReader(TEST_PATH)
test_a = reader.read_field('u')[-ntest:,::sub,::sub,:T_in]
test_u = reader.read_field('u')[-ntest:,::sub,::sub,T_in:T+T_in]
print(train_u.shape)
print(test_u.shape)
assert (S == train_u.shape[-2])
assert (T == train_u.shape[-1])
train_a = train_a.reshape(ntrain,S,S,T_in)
test_a = test_a.reshape(ntest,S,S,T_in)
train_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(train_a, train_u), batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(test_a, test_u), batch_size=batch_size, shuffle=False)
################################################################
# training and evaluation
################################################################
model = FNO2d(modes, modes, width).cuda()
# model = torch.load('model/ns_fourier_V100_N1000_ep100_m8_w20')
print(count_params(model))
optimizer = Adam(model.parameters(), lr=learning_rate, weight_decay=1e-4)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=scheduler_step, gamma=scheduler_gamma)
myloss = LpLoss(size_average=False)
for ep in range(epochs):
model.train()
t1 = default_timer()
train_l2_step = 0
train_l2_full = 0
for xx, yy in train_loader:
loss = 0
xx = xx.to(device)
yy = yy.to(device)
for t in range(0, T, step):
y = yy[..., t:t + step]
im = model(xx)
loss += myloss(im.reshape(batch_size, -1), y.reshape(batch_size, -1))
if t == 0:
pred = im
else:
pred = torch.cat((pred, im), -1)
xx = torch.cat((xx[..., step:], im), dim=-1)
train_l2_step += loss.item()
l2_full = myloss(pred.reshape(batch_size, -1), yy.reshape(batch_size, -1))
train_l2_full += l2_full.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
test_l2_step = 0
test_l2_full = 0
with torch.no_grad():
for xx, yy in test_loader:
loss = 0
xx = xx.to(device)
yy = yy.to(device)
for t in range(0, T, step):
y = yy[..., t:t + step]
im = model(xx)
loss += myloss(im.reshape(batch_size, -1), y.reshape(batch_size, -1))
if t == 0:
pred = im
else:
pred = torch.cat((pred, im), -1)
xx = torch.cat((xx[..., step:], im), dim=-1)
test_l2_step += loss.item()
test_l2_full += myloss(pred.reshape(batch_size, -1), yy.reshape(batch_size, -1)).item()
t2 = default_timer()
scheduler.step()
print(ep, t2 - t1, train_l2_step / ntrain / (T / step), train_l2_full / ntrain, test_l2_step / ntest / (T / step),
test_l2_full / ntest)
# torch.save(model, path_model)
# pred = torch.zeros(test_u.shape)
# index = 0
# test_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(test_a, test_u), batch_size=1, shuffle=False)
# with torch.no_grad():
# for x, y in test_loader:
# test_l2 = 0;
# x, y = x.cuda(), y.cuda()
#
# out = model(x)
# out = y_normalizer.decode(out)
# pred[index] = out
#
# test_l2 += myloss(out.view(1, -1), y.view(1, -1)).item()
# print(index, test_l2)
# index = index + 1
# scipy.io.savemat('pred/'+path+'.mat', mdict={'pred': pred.cpu().numpy()})
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。