1 Star 0 Fork 12

管梦妮/STATA-DEA

forked from 连享会/STATA-DEA 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
ldea.do 34.79 KB
一键复制 编辑 原始数据 按行查看 历史
kerrydu 提交于 2019-09-04 16:42 . original files
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168
// Start of the MATA Definition Area -------------------------------------------
version 10
mata:
mata clear
mata set matastrict on
/** HISTORY:
* -----------------------------------------------------------------------------
* 2012-09-22(SAT): Deprecate and Remove minsubscript Option
* ---------------------------------------------------------------------------*/
/**
* Declare the variable's boundary condition structure.
*/
struct BoundCond {
real scalar val, lower, upper, free
}
/**
* Declare the LP(RSM: Revised Simplex Method)'s parameter structure.
* Substitute for the LpParamStruct in the feature.
*/
struct LpParam {
real scalar minYn // whether minimization or maximization
real scalar vars // number of variables
real scalar slacks // number of slacks
real scalar artificials // number of artificials
real scalar tol1 // tolerance 1
real scalar tol2 // tolerance 2
string scalar trace // whether trace or not.
string scalar tracename // trancename
}
/**
* Declare the LP(for DEA)'s parameter structure.
*/
struct LpParamStruct {
string scalar rts // return to scale(CRS|VRS|IRS|DRS)
real scalar isin // if 1 then 'in', other then 'out'
real scalar stagestep // stage step. 1 or 2
real scalar minYn // whether minimization or maximization
real scalar dmus // number of dmus
real scalar dmuins // number of inputs per dmu
real scalar dmuouts // number of outputs per dmu
real scalar slacks // number of slacks
real scalar artificials // number of artificials
real scalar tol1 // tolerance 1
real scalar tol2 // tolerance 2
real scalar isminsubscript // whether min subscript or not.(Deprecated)
string scalar trace // whether trace or not.
}
/**
* Declare the LP's result structure.
*/
struct LpResultStruct {
real scalar xVal // objective funtion value.
real matrix XB // basic feasible solution.
real scalar rc // return code(zero means success)
string scalar rmsg // return message
}
/**
* Declare the LP's tableau structure.
*/
struct LpTableauStruct {
pointer(real matrix) scalar CB, CNj
pointer(real matrix) scalar B, Nj, b
pointer(real matrix) scalar Bi,CBBi, rawXB, XB
}
/**
* make frame matrix and set matrix value at the param frameMat
* rts - return to scale, ort - orientation
*/
function _mkframemat( string scalar frameMat,
string scalar dmuIn,
string scalar dmuOut,
string scalar rts,
string scalar ort )
{
real matrix F, DI, DO
DI = st_matrix(dmuIn)
DO = st_matrix(dmuOut)
F = mkframemat(DI, DO, rts, ort)
// return result
st_matrix(frameMat, F)
}
/**
* make simplex method frame matrix
* rts - return to scale, ort - orientation
*/
real matrix function mkframemat(
real matrix DI,
real matrix DO,
string scalar rts,
string scalar ort )
{
real matrix F
real scalar row, col, sig
real scalar dmus, slackins, slackouts, slacks
real scalar frows, fcols
if (cols(DI) != cols(DO)) {
_error(3200, "in and out count of dmu is not match!")
}
// basic value setting for artificial variabels
sig = ((ort == "IN") ? -1 : 1)
dmus = cols(DI) // or cols(DO), because cols(DI) == cols(DO)
slackins = rows(DI); slackouts = rows(DO)
if (rts == "CRS") {
slacks = slackins + slackouts
// target coefficient\slackins\slackouts
frows = 1 + slackins + slackouts
// target coefficient,theta,dmus,slackins,slackouts,rhs
fcols = 1 + 1 + dmus + slackins + slackouts + 1
}
else if (rts == "VRS") {
slacks = slackins + slackouts
// target coefficient\slackins\slackouts\sum of lamda
frows = 1 + slackins + slackouts + 1
// target coefficient,theta,dmus,slackins,slackouts,rhs
fcols = 1 + 1 + dmus + slackins + slackouts + 1
}
else if (rts == "IRS") {
slacks = slackins + slackouts + 1
// target coefficient\slackins\slackouts\sum of lamda
frows = 1 + slackins + slackouts + 1
// target coefficient,theta,dmus,slackins,slackouts,sum of lamda,rhs
fcols = 1 + 1 + dmus + slackins + slackouts + 1 + 1
}
else if (rts == "DRS") {
slacks = slackins + slackouts + 1
// target coefficient\slackins\slackouts\sum of lamda
frows = 1 + slackins + slackouts + 1
// target coefficient,theta,dmus,slackins,slackouts,sum of lamda,rhs
fcols = 1 + 1 + dmus + slackins + slackouts + 1 + 1
}
else {
_error(3498, "invalid rts optoin.")
}
// make frame matrix for CRS(CCR)
F = J(frows, fcols, 0)
F[1, 1] = 1
replacesubmat(F, 2, 3, sig * DI)
replacesubmat(F, 2 + slackins, 3, -sig * DO)
replacesubmat(F, 2, 3 + dmus, sig * I(slacks))
// adjustment
if (rts == "VRS") {
replacesubmat(F, frows, 3, J(1, dmus, 1))
F[frows,fcols] = 1
}
else if (rts == "IRS") {
replacesubmat(F, frows, 3, J(1, dmus, 1))
F[frows,2 + dmus + slacks] = -1
F[frows,fcols] = 1
}
else if (rts == "DRS") {
replacesubmat(F, frows, 3, J(1, dmus, 1))
F[frows,2 + dmus + slacks] = 1
F[frows,fcols] = 1
}
// return result
return(F)
}
/**
* DEA Loop - Data Envelopment Analysis Loop for DMUs
*/
function _dealp ( string scalar frameMat,
string scalar dmuIn,
string scalar dmuOut,
string scalar rts,
string scalar ort,
real scalar stagestep,
real scalar tol1,
real scalar tol2,
string scalar minsubscript, // Deprecated
string scalar efficientVec,
string scalar trace,
| real scalar dmui )
{
real matrix F, DI, DO, DEALPRSLT
real colvector effvec
F = st_matrix(frameMat)
DI = st_matrix(dmuIn)
DO = st_matrix(dmuOut)
if (stagestep == 2) {
effvec = st_matrix(efficientVec)
}
DEALPRSLT = dealp(F, DI, DO, rts, ort, stagestep, tol1, tol2,
minsubscript, effvec, trace, dmui)
st_matrix("r(dealprslt)", DEALPRSLT)
}
/**
* DEA Loop - Data Envelopment Analysis Loop for DMUs
*/
real matrix function dealp (
real matrix F,
real matrix DI,
real matrix DO,
string scalar rts,
string scalar ort,
real scalar stagestep,
real scalar tol1,
real scalar tol2,
string scalar minsubscript, // Deprecated
real colvector effvec,
string scalar trace,
real scalar _dmui )
{
real matrix M, VARS, LPRSLT, DEALPRSLT, ARTIF
real scalar dmus, slackins, slackouts, slacks, artificials, artificialrow
real scalar frows, fcols, isin, i, dmui, mindmui, maxdmui
real colvector l_effvec, skipdmu
string scalar tracename
struct BoundCond matrix boundF, boundM
struct LpParamStruct scalar param
if (cols(DI) != cols(DO)) {
_error(3200, "in and out count of dmu is not match!")
}
if (!(rts == "CRS" || rts == "VRS" || rts == "IRS" || rts == "DRS")) {
_error(3498, "rts must be one of CRS, VRS, IRS, DRS")
}
// basic value setting for artificial variabels
isin = (ort == "IN")
frows = rows(F); fcols = cols(F)
dmus = cols(DI) // or cols(DO), because cols(DI) == cols(DO)
slackins = rows(DI); slackouts = rows(DO)
tracename = rts + "-" + ort + "-" + (stagestep == 1 ? "SI" : "SII")
// -------------------------------------------------------------------------
// define number of slacks by rts
if (rts == "CRS" || rts == "VRS") slacks = slackins + slackouts
else if (rts == "IRS" || rts == "DRS") slacks = slackins + slackouts + 1
// define number of artificials by rts, ort, stage
if (rts == "CRS" || rts == "DRS") {
if (stagestep == 1) {
if (isin) {
artificials = slackins+slackouts; artificialrow = 2;
}
else artificials = 0
}
else {
artificials = slackouts; artificialrow = 2+slackins;
}
}
else if (rts == "VRS" || rts == "IRS") {
if (stagestep == 1) {
if (isin) {
artificials = slackins+slackouts+1; artificialrow = 2;
}
else {
artificials = 1; artificialrow = frows //== 2+slackins+slackouts
}
}
else {
artificials = slackouts+1; artificialrow = 2+slackins
}
}
if (artificials > 0) {
ARTIF = J(1, artificials, 1) \ J(frows-1, artificials, 0)
replacesubmat(ARTIF, artificialrow, 1, I(artificials))
F = F[,1..fcols-1], ARTIF, F[,fcols]
frows = rows(F); fcols = cols(F) // revise frows, fcols
}
// -------------------------------------------------------------------------
// constants value to right-hand side(rhs) and both sides multiplied by -1.
if (stagestep == 2) {
l_effvec = effvec
skipdmu = (effvec :== .)
if (isin) {
replacesubmat(F, 2, 3, -F[2..1+slackins,3::2+dmus+slackins])
}
else {
replacesubmat(F, 2+slackins, 3,
-F[2+slackins..1+slackins+slackouts,3::2+dmus+slacks])
}
}
else skipdmu = J(1, dmus, 0)
// -------------------------------------------------------------------------
boundF = J(1, fcols, BoundCond());
// set the boundary for the efficiency variable(theta, eta):
// -INFINITE <= efficiency <= INFINITE
boundF[1,2].val = 0; boundF[1,2].lower = 0; boundF[1,2].upper = .
// set boundary for the weight variable(lamda, mu):
// 0 <= weight <= INFINITE
for (i=3; i<dmus+3; i++) {
boundF[1,i].val = 0; boundF[1,i].lower = 0; boundF[1,i].upper = .
}
// set boundary for the non-structural variable(slack, artificial).
// 0 <= slacks and atrificials <= INFINITE
for (i=dmus+3; i<fcols; i++) {
boundF[1,i].val = 0; boundF[1,i].lower = 0; boundF[1,i].upper = .
}
// liststruct(boundF); // for debug
// set the lp's parameters
param.rts = rts
param.isin = isin
param.stagestep = stagestep
param.dmus = dmus
param.slacks = slacks
param.artificials = artificials
param.tol1 = tol1
param.tol2 = tol2
param.trace = trace
// liststruct(param); // for debug
// -------------------------------------------------------------------------
DEALPRSLT = J(0, 1+ dmus + slacks, 0)
// Added by Brian(2012.06.30)
if (_dmui <= 0 || _dmui >= .) {
mindmui = 1; maxdmui = dmus;
}
else {
mindmui = _dmui; maxdmui = _dmui;
if (stagestep == 2) {
l_effvec = J(1, dmus, effvec[1])
skipdmu = (l_effvec :== .)
}
}
if (isin) {
for (dmui=mindmui; dmui<=maxdmui; dmui++) {
if (skipdmu[dmui]) {
LPRSLT = J(1, cols(DEALPRSLT), .)
}
else {
M = F; boundM = boundF
if (stagestep == 1) replacesubmat(M, 2, 2, DI[,dmui])
else replacesubmat(M, 2, fcols, DI[,dmui]*l_effvec[dmui])
replacesubmat(M, 2+slackins, fcols, DO[,dmui])
// execute LP
VARS = lp_phase1(M, boundM, dmui, tracename, param)
if (VARS[1,1] == .) {
LPRSLT = J(1, cols(DEALPRSLT), .)
}
else {
LPRSLT = lp_phase2(M, boundM, VARS, dmui, tracename, param);
}
}
DEALPRSLT = DEALPRSLT \ LPRSLT
}
}
else {
for (dmui=mindmui; dmui<=maxdmui; dmui++) {
if (skipdmu[dmui]) {
LPRSLT = J(1, cols(DEALPRSLT), .)
}
else {
M = F; boundM = boundF
replacesubmat(M, 2, fcols, DI[,dmui])
if (stagestep == 1) {
if (rts == "CRS" || rts == "DRS") M[1,2] = -1
replacesubmat(M, 2+slackins, 2, DO[,dmui])
}
else replacesubmat(M, 2+slackins, fcols, DO[,dmui]*l_effvec[dmui])
// execute LP
if (artificials == 0) { // if artificials == 0 then skip phase 1
VARS = (0, 2+dmus..1+dmus+slacks, 1..1+dmus, 0)
M = M[,1],
M[,VARS[,2::cols(VARS)-1] :+ 1],
M[,cols(M)]
boundM = boundM[,1],
boundM[,VARS[,2::cols(VARS)-1] :+ 1],
boundM[,cols(M)]
}
else {
VARS = lp_phase1(M, boundM, dmui, tracename, param)
}
if (VARS[1,1] == .) {
LPRSLT = J(1, cols(DEALPRSLT), .)
}
else {
LPRSLT = lp_phase2(M, boundM, VARS, dmui, tracename, param);
}
}
DEALPRSLT = DEALPRSLT \ LPRSLT
}
}
// adjust efficiency
if (stagestep == 2) {
replacesubmat(DEALPRSLT, 1, 1, effvec)
}
return(DEALPRSLT)
}
real matrix function lp_phase1 ( real matrix M,
struct BoundCond matrix boundM,
real scalar dmui,
string scalar aTracename,
struct LpParamStruct scalar param )
{
real matrix T, VARS
real scalar i, j, w, mrows, mcols, phase
real vector reorderidx, bfsidx, nonbfsidx
string scalar tracename, msg
struct LpResultStruct scalar lpresult
mrows = rows(M); mcols = cols(M)
tracename = aTracename + "-PI"
// 1st: initialize matrix.
if (param.trace == "trace") {
displayas("txt")
printf("\n\n\n----------[PHASE I]----------")
printf("\n[DMUi=%g]%s: initialize matrix.\n",
dmui, tracename); M
}
// 2nd: classify basic and nonbasic.
VARS = (0, 1..1+param.dmus+param.slacks, -1..-param.artificials, 0)
bfsidx = J(1, mrows-1, .); nonbfsidx = J(1, 0, .)
for (j = 3+param.dmus; j <= mcols-1; j++) {
/* Old Code
T = (M[2::mrows,j] :== 1)
if (sum(T) == 1) {
maxindex(T, 1, i, w); bfsidx[i] = j
}
else nonbfsidx = nonbfsidx, j
*/
// Modified by Brian(2012.08.25): because critical logic error.
T = M[2::mrows,j]
if ((sum(T :!= 0) == 1) && (sum(T) == 1)) {
maxindex(T, 1, i, w); bfsidx[i] = j
}
else nonbfsidx = nonbfsidx, j
}
reorderidx = (1, bfsidx[1,], 2..2+param.dmus, nonbfsidx[1,], mcols)
VARS = VARS[,reorderidx];
M = M[,reorderidx]; boundM = boundM[,reorderidx]
if (param.trace == "trace") {
displayas("txt")
printf("\n[DMUi=%g]%s: classify basic and nonbasic.\n",
dmui, tracename); M; VARS
}
// 3rd: solve the linear programming(LP).
phase = 1
lpresult = lp(M, boundM, VARS, dmui, phase, tracename, param)
if(lpresult.rc) VARS[1,1] = .
return(VARS)
}
real matrix function lp_phase2 ( real matrix M,
struct BoundCond matrix boundM,
real matrix VARS,
real scalar dmui,
string scalar aTracename,
struct LpParamStruct scalar param )
{
real matrix T, XB, orgVARS, LPRSLT
real scalar i, j, phase, mrows, mcols, realslacks
real vector slackidx
string scalar tracename, msg
struct LpResultStruct scalar lpresult
orgVARS = VARS
mrows = rows(M); mcols = cols(M)
tracename = aTracename + "-PII"
// modify target function value:
M[1,] = J(1,mcols,0); M[1,1] = 1
if (param.stagestep == 1) { // X = theta
for (j=2; j<mcols; j++) {
if (VARS[1,j] == 1) M[1,j] = 1 // because of theta index == 1
}
}
else if (param.stagestep == 2) { // X = S1 + S2 + ... + Sn
realslacks = (param.rts == "IRS" || param.rts == "DRS") ?
param.slacks-1 : param.slacks;
slackidx = (2+param.dmus..1+param.dmus+realslacks)
for (j=2; j<mcols; j++) {
for (i=1; i<=realslacks; i++) {
if (VARS[1,j] == slackidx[i] && !allof(M[,j], 0)) M[1,j] = 1
}
}
}
if (param.trace == "trace") {
displayas("txt")
printf("\n----------[PHASE II]----------")
printf("\n[DMUi=%g]%s: initialize matrix.\n",
dmui, tracename); M
printf("\n[DMUi=%g]%s: VARS.\n", dmui, tracename); VARS
}
phase = 2
lpresult = lp(M, boundM, VARS, dmui, phase, tracename, param)
// -------------------------------------------------------------------------
// phase 2 final.
// -------------------------------------------------------------------------
if(lpresult.rc) {
LPRSLT = J(1, 1+param.dmus+param.slacks, .)
}
else {
// lpresult = theta(1) + dmus + slacks
LPRSLT = J(1, 1+param.dmus+param.slacks, 0)
for (j=1; j<=rows(lpresult.XB) ; j++) {
if (VARS[1,j+1] > 0) LPRSLT[1, VARS[1,j+1]] =lpresult.XB[j, 1]
}
if (param.stagestep == 1 && LPRSLT[1, 1] <= 0) {
LPRSLT[1, 1] = lpresult.xVal
}
}
if (param.trace == "trace") {
msg = sprintf("[DMUi=%g]%s-FINAL", dmui, tracename);
printf("\n%s: original VARS.\n", msg); orgVARS
printf("\n%s: VARS.\n", msg); VARS
printf("\n%s: XB.\n", msg); lpresult.XB
printf("\n%s: LPRSLT.\n", msg); LPRSLT
}
return(LPRSLT)
}
/**
* return 0: sucess
* return 1: B inverse error
* return 2: XB has negative value.
*/
real scalar function decompsition(real matrix M,
struct BoundCond matrix boundM,
real scalar mrows,
real scalar mcols,
real scalar slacks,
struct LpTableauStruct scalar tbl,
struct LpParamStruct scalar param )
{
real matrix CB, CNj
real matrix B, Nj, b
real matrix Bi,CBBi, rawXB, XB, BiNjXj
real scalar j, Njcols, result
// set the tableau.
tbl.CB = &CB; tbl.CNj = &CNj;
tbl.B = &B; tbl.Nj = &Nj; tbl.b = &b
tbl.Bi = &Bi; tbl.CBBi = &CBBi
tbl.rawXB = &rawXB; tbl.XB = &XB;
CB = M[1,2::1+slacks]; CNj = M[1,2+slacks::mcols-1]
B = M[2..mrows,2::1+slacks]; Nj = M[2..mrows,2+slacks::mcols-1]
b = M[2..mrows,mcols]
Bi = lusolve(B, I(rows(B)), 1e-14)
if (any(Bi :== .)) { // B is singular matrix.
return (result = 1);
// FIXME use??
// Bi = svsolve(B, I(rows(B)), 1e-14)
// if (any(Bi :== .)) return (result = 1);
}
CBBi = CB*Bi
// BFS(basic feasible solution)
Njcols = cols(Nj); BiNjXj = J(rows(Nj), 1, 0)
for (j=1; j<=Njcols; j++) {
BiNjXj = BiNjXj :+ (Bi*Nj[.,1]*(boundM[1,1+slacks+j].val))
}
rawXB = Bi*b - BiNjXj
XB = edittozerotol(rawXB, param.tol2) // BFS(basic feasible solution)
// BFS(basic feasible solution) must be nonnegative.
if (any(XB :< 0)) return (result = 2);
return (result = 0); // sucess
}
/**
* Refactoring Target: lp_for_dea
*
*/
struct LpResultStruct function lp ( real matrix M,
struct BoundCond matrix boundM,
real matrix VARS,
real scalar dmui,
real scalar phase,
string scalar tracename,
struct LpParamStruct scalar param )
{
real matrix B, CB, Bi, b, XB, rawXB, BiNjXj, CBBi, Nj, CNj, Aj, alpha
real matrix T, TH1, TH2, valT, lowerT, upperT, LVi, V
real scalar i, j, w, mi, boundi, evj, lvj, Njcols, leavingCase
real scalar mrows, mcols, enteringVar, leavingVar, calci, maxiter
real scalar existArtificial, xVal, alphaVal
real scalar minYn, tcols, tempVal, minVal, maxVal
struct BoundCond matrix boundT
struct LpResultStruct scalar lpresult
// struct LpTableauStruct scalar tbl
real colvector enterings, leavings
real scalar enteringi, leavingi
real scalar slacks, isin, tol1, tol2
string scalar trace, msg
// -------------------------------------------------------------------------
slacks = rows(M) - 1 // number of basic feasible solution
tol1 = param.tol1; tol2 = param.tol2
trace = param.trace
if (param.minYn >= .) {
minYn = 0
if (param.stagestep == 1) minYn = (phase == 1) ? 1 : param.isin
else minYn = (phase == 1)
}
else {
minYn = param.minYn
}
// -------------------------------------------------------------------------
mrows = rows(M); mcols = cols(M)
LVi = J(slacks, 1, .) // leaving variable index matrix.
// -------------------------------------------------------------------------
if (trace == "trace") {
displayas("txt"); msg = "initial tableau in the LP."
printf("\n[DMUi=%g]%s: %s\n", dmui, tracename, msg); M
}
lpresult.rc = 0; lpresult.rmsg = ""
existArtificial = (phase == 2 && any(VARS[,2::1+slacks] :< 0));
maxiter = st_numscalar("c(maxiter)")
for (calci=1 ; calci<=maxiter ; calci++) { // prevent infinite loop
if (trace == "trace") {
printf("\n[DMUi=%g]%s-LOOP[%g] Start...\n", dmui, tracename, calci)
}
B = M[2..mrows,2::1+slacks]; CB = M[1,2::1+slacks]
Nj = M[2..mrows,2+slacks::mcols-1]; CNj = M[1,2+slacks::mcols-1]
b = M[2..mrows,mcols]
Bi = lusolve(B, I(rows(B)), 1e-14)
if (any(Bi :== .)) { // B is singular matrix.
Bi = svsolve(B, I(rows(B)), 1e-14)
if (any(Bi :== .)) {
lpresult.rc = 3498;
lpresult.rmsg = sprintf("%s[DMUi=%g][LOOP=%g]%s",
"No Solution(BFS's inverse is not exist):",
dmui, calci, tracename)
break;
/* // TODO Confirm?
display("B:");B
display("rank(B) : det(B)"); rank(B), det(B)
_error(3498, "No Solution(BFS's inverse is not exist):"
+ "[DMUi=" + strofreal(dmui) + "]"
+ "[LOOP=" + strofreal(calci) + "]"
+ tracename)
*/
}
}
CBBi = CB*Bi
// BFS(basic feasible solution)
Njcols = cols(Nj); BiNjXj = J(rows(Nj), 1, 0)
for (j=1; j<=Njcols; j++) {
BiNjXj = BiNjXj :+ (Bi*Nj[.,1]*(boundM[1,1+slacks+j].val))
}
rawXB = Bi*b - BiNjXj
XB = edittozerotol(rawXB, tol2) // BFS(basic feasible solution)
if (any(XB :== .)) {
lpresult.rc = 3498;
lpresult.rmsg = sprintf("%s[DMUi=%g][LOOP=%g]%s",
"No Solution(XB contains missing value):",
dmui, calci, tracename)
break;
/* // TODO Confirm?
displayas("err"); msg = "If XB contains missing value, error."
printf("\n[DMUi=%g]%s: %s\n", dmui, tracename, msg); B;Bi;XB;
_error(3498, "No Solution(XB have the missing value):"
+ "[DMUi=" + strofreal(dmui) + "]" + tracename);
*/
}
// BFS(basic feasible solution) must be nonnegative.
/* // TODO Confirm ??
if (any(XB :< 0)) {
displayas("err"); msg = "If XB contains negative value, error."
printf("\n[DMUi=%g]%s: %s\n", dmui, tracename, msg); XB
_error(3498, "No Solution(XB contains negative value):"
+ "[DMUi=" + strofreal(dmui) + "]" + tracename);
}
*/
boundT = boundM[1,2+slacks::mcols-1]
tcols = cols(boundT); valT = J(1,tcols,.)
for(j=1; j<=tcols; j++) {
valT[1,j] = boundT[1,j].val
}
xVal = edittozerotol((CB*rawXB + CNj*valT'), tol2) // objective funtion value
T = VARS[1,2::1+rows(XB)] // rows(XB) equal to number of slacks.
if (trace == "trace") {
printf("\n[DMUi=%g]%s-LOOP[%g]: CBBi * b = %g\n",
dmui, tracename, calci, xVal);
display("Entered index(if value is negative, that's artificial):"); T;
display("XB = Bi*b - BiNjXj:"); rawXB;
}
// ---------------------------------------------------------------------
// loop terminated condition.
// ---------------------------------------------------------------------
if (phase == 1) {
// objective function value is zero
if (xVal == 0 ) {
// if all artificals are out or remaining artificals are at zero,
// stop and go phaseII
T = (T :< 0) // artificial remain or not?
if (allof(T, 0) || allof(select(XB, T'), 0)) break;
// If remaining artificails are not zero, No Solution.
lpresult.rc = 3498
lpresult.rmsg = sprintf("%s[DMUi=%g][LOOP=%g]%s",
"No Solution(Remaining artificails are not zero):",
dmui, calci, tracename)
break;
// TODO confirm!
// display("[BFS index | XB]");T;XB;
// _error(3498, "No Solution(Remaining artificails are not zero):"
// + "[DMUi=" + strofreal(dmui) + "]" + tracename)
}
}
// ---------------------------------------------------------------------
// Select entering variable.
// ---------------------------------------------------------------------
enteringVar = 0; tempVal = 0; minVal = 0; maxVal = 0; boundi = 0
Njcols = cols(Nj); T = J(1, Njcols, .)
for (j=1; j<=Njcols; j++) {
tempVal = CBBi * Nj[,j] - CNj[1,j]
if (abs(tempVal) < tol1) continue;
boundi = 1 + slacks + j
if (boundM[1,boundi].val == boundM[1,boundi].lower) { // lower bound
T[1,j] = tempVal
}
else { // upper bound
T[1,j] = -tempVal
}
} // end of for
if (!minYn) { // maximization.
T = T :/ (T :< 0)
if (!allof(T, .)) {
minindex(T, 1, enterings, w); enteringi = 1
enteringVar = enterings[enteringi]
evj = 1+slacks+enteringVar
}
}
else { // minimization.
T = T :/ (T :> 0)
if (!allof(T, .)) {
maxindex(T, 1, enterings, w); enteringi = 1
enteringVar = enterings[enteringi]
evj = 1+slacks+enteringVar
}
}
// No more candidate for entering variable.
if (enteringVar == 0) {
if (trace == "trace") {
printf("\n[DMUi=%g]%s-LOOP[%g]:", dmui, tracename, calci)
printf("No more candidate for entering variable.\n:(CB*Bi*Nj)-Cj\n");T
}
if (phase == 1) {
lpresult.rc = 3498;
lpresult.rmsg = sprintf("%s[DMUi=%g][LOOP=%g]%s",
"No Solution(No more candidate for entering variable):",
dmui, calci, tracename)
// TODO Confirm?
// _error(3498, "No Solution(No more select entering variable):"
// + "[DMUi=" + strofreal(dmui) + "]" + tracename)
}
break
}
if (trace == "trace") {
displayas("txt"); msg = "Select entering variable."
printf("\n[DMUi=%g]%s-LOOP[%g]: %s(%g:%g)\n:(CB*Bi*Nj)-Cj\n",
dmui, tracename, calci, msg, enteringVar, T[enteringVar]); T
}
// ---------------------------------------------------------------------
// Select leaving variable.
// ---------------------------------------------------------------------
leavingVar = 0
Aj = Nj[,enteringVar]
alpha = edittozerotol(Bi*Aj, tol1)
if (existArtificial) {
T = VARS[1,2::1+slacks]; tcols = cols(T)
for (j=1; j<=tcols; j++) {
if (T[1,j] < 0 && alpha[j,1] != 0) {
leavingVar = j; lvj = 1+leavingVar
break;
}
}
}
if (leavingVar == 0) {
boundT = boundM[1,2::1+slacks]
tcols = cols(boundT)
lowerT = upperT = J(1,tcols,.)
for(j=1; j<=tcols; j++) {
lowerT[1,j] = boundT[1,j].lower
upperT[1,j] = boundT[1,j].upper
}
// XB=Bi*b
leavingCase = 0
if (boundM[1,evj].val == boundM[1,evj].lower) {
minVal = .;
// 1. alpha's positive min value
TH1 = boundM[1,evj].lower :+ ((rawXB :- lowerT')
:/ (alpha :* (alpha :> 0)))
// TH1 = edittozerotol(TH1, tol1)
if (any(TH1 :< minVal)) {
minindex(TH1, 1, mi, w)
leavingVar = mi[1]; lvj = 1+leavingVar
if (phase == 1 && w[1,2] >= 2 && VARS[1,lvj] > 0) {
// if phase 1 and same min ratio test result,
// artificial variable must leave first.
tcols = w[1,2]
for (j=2; j<=tcols; j++) {
if (VARS[1,mi[j]+1] < 0) {
leavingVar = mi[j]; lvj = 1+leavingVar
break;
}
}
}
minVal = TH1[leavingVar,1];
leavingCase = 1
}
// 2. alpha's negative min value
TH2 = boundM[1,evj].lower :+ ((rawXB :- upperT')
:/ (alpha :* (alpha :< 0)))
// TH2 = edittozerotol(TH2, tol1)
if (any(TH2 :< minVal)) {
minindex(TH2, 1, mi, w)
leavingVar = mi[1]; lvj = 1+leavingVar
minVal = TH1[leavingVar,1]; leavingCase = 2
}
// 3. get the enteringVar's upper value
if (boundM[1,evj].upper < minVal) {
minVal = boundM[1,evj].upper; leavingCase = 3
}
if (trace == "trace") {
displayas("txt"); msg = "Select leaving variable.[MinVal]"
printf("\n[DMUi=%g]%s-LOOP[%g]: %s(%g:%g)\n",
dmui, tracename, calci, msg, leavingVar, minVal)
display("XB | alpha:(XB=Bi*b, alpha=Bi*Aj):");rawXB,alpha
display("[MinVal]enteringVar's upper | theta1 | theta2")
printf("\n[boundM[1,%g].upper:%g][leavingCase:%g]\n",
evj, boundM[1,evj].upper, leavingCase); TH1,TH2
}
if (leavingCase == 1) {
boundM[1,lvj].val = boundM[1,lvj].lower
}
else if (leavingCase == 2) {
boundM[1,lvj].val = boundM[1,lvj].upper
}
else { // if (leavingCase == 3)
boundM[1,evj].val = boundM[1,evj].upper; continue;
}
}
else { // if (boundM[1,evj].val == boundM[1,evj].upper)
maxVal = 0;
// 1. alpha's positive min value
TH1 = boundM[1,evj].upper :+ ((rawXB :- upperT')
:/ (alpha :* (alpha :> 0)))
// TH1 = edittozerotol(TH1, tol1)
if (any(TH1 :> maxVal)) {
maxindex(TH1, 1, mi, w)
leavingVar = mi[1]; lvj = 1+leavingVar
maxVal = TH1[leavingVar,1]; leavingCase = 1
}
// 2. alpha's negative min value
TH2 = boundM[1,evj].upper :+ ((rawXB :- lowerT')
:/ (alpha :* (alpha :< 0)))
// TH2 = edittozerotol(TH2, tol1)
if (any(TH2 :> maxVal)) {
maxindex(TH2, 1, mi, w)
leavingVar = mi[1]; lvj = 1+leavingVar
maxVal = TH1[leavingVar,1]; leavingCase = 2
}
// 3. get the enteringVar's lower value
if (boundM[1,evj].lower > maxVal) {
maxVal = boundM[1,evj].lower; leavingCase = 3
}
if (trace == "trace") {
displayas("txt"); msg = "Select leaving variable.[MaxVal]"
printf("\n[DMUi=%g]%s-LOOP[%g]: %s(%g:%g)\n",
dmui, tracename, calci, msg, leavingVar, maxVal)
display("XB | alpha:(XB=Bi*b, alpha=Bi*Aj):");XB,alpha
display("[MaxVal]enteringVar's lower | theta1 | theta2")
printf("\n[boundM[1,%g].lower:%g][leavingCase:%g]\n",
evj, boundM[1,evj].lower, leavingCase); TH1,TH2
}
if (leavingCase == 1) {
boundM[1,lvj].val = boundM[1,lvj].upper
}
else if (leavingCase == 2) {
boundM[1,lvj].val = boundM[1,lvj].lower
}
else { // if (leavingCase == 3)
boundM[1,evj].val = boundM[1,evj].lower; continue;
}
}
}
// If no leaving variable exits
if (leavingVar == 0) {
if (trace == "trace")
display("Break: No more candidate for leaving variable.")
lpresult.rc = 3498;
lpresult.rmsg = sprintf("%s[DMUi=%g][LOOP=%g]%s",
"No Solution(No more candidate for leaving variable):",
dmui, calci, tracename)
break
}
// When theta is leaving at phase 2, break! // FIXME: is correct ?
if (phase == 2 && VARS[,lvj] == 1) {
if (trace == "trace") display("Break: theta() is not leaving.")
break
}
// ---------------------------------------------------------------------
// reply calculatation result.
// ---------------------------------------------------------------------
LVi[leavingVar,1] = VARS[,evj]
_swapcols(M, lvj, evj)
_swapcols(boundM, lvj, evj)
_swapcols(VARS, lvj, evj)
// Clear artificial variable
if (VARS[,evj] < 0) {
T = J(1, cols(VARS), 1); T[1,evj] = 0
VARS = select(VARS, T)
M = select(M, T)
boundM = select(boundM, T)
mcols = cols(M)
// if exist artificial(phase II)
if (existArtificial) {
existArtificial = any(VARS[,2::1+slacks] :< 0)
}
}
if (trace == "trace") {
printf("\n[DMUi=%g]%s-LOOP[%g]: updated tableau.[%g(%g) <--> %g(%g)]\n",
dmui, tracename, calci, lvj, leavingVar, evj, enteringVar); M
display("LVi: Entered variable's VARS index value."); LVi
display("VARS: Variable's index."); VARS
}
} //end of main for
// return lpresult
if (calci > maxiter) {
lpresult.rc = 3498;
lpresult.rmsg = sprintf("%s[DMUi=%g][LOOP=%g]%s",
"No Solution(LOOP greater than maxiter):",
dmui, calci, tracename)
}
if(lpresult.rc) display(lpresult.rmsg)
lpresult.xVal = xVal
lpresult.XB = XB
return(lpresult)
}
/* A[.,lvj] <--> A[.,evj] */
function _swapcols( transmorphic matrix A,
real scalar lvj,
real scalar evj )
{
transmorphic colvector v
v = A[., lvj]
A[., lvj] = A[., evj]
A[., evj] = v
}
function replacesubmat ( transmorphic matrix M,
real scalar row,
real scalar col,
transmorphic matrix T )
{
M[|row,col\row + rows(T) - 1, col + cols(T) - 1|] = T
}
function _setup_dearslt_names(string scalar dearsltmat,
string scalar dmuinmat,
string scalar dmuoutmat )
{
string matrix DMU_CS // dmu in matrix column stripes
string matrix DEARSLT_CS // dea result matrix column stripes
string matrix DEARSLT_RS // dea result matrix row stripes
real matrix M
real scalar mcols, cnt, i
M = st_matrix(dearsltmat)
mcols = cols(M)
// TODO replace the chars. ex) if ([a-z][A-Z][0-9][_]) is not. replace '_'
DMU_CS = st_matrixcolstripe(dmuinmat)
for (i = 1; i <= rows(DMU_CS); i++) {
DMU_CS[i, 1] = "ref"
}
DEARSLT_CS = ("","rank"\"","theta")\DMU_CS\ // column join
st_matrixrowstripe(dmuinmat)\st_matrixrowstripe(dmuoutmat)
if (mcols - rows(DEARSLT_CS) > 0) {
cnt = 0
for (i = rows(DEARSLT_CS)+1 ; i <= mcols ; i++) {
DEARSLT_CS = DEARSLT_CS \ ("slack", "slack_" + strofreal(++cnt))
}
}
DEARSLT_RS = st_matrixcolstripe(dmuinmat)
// name the row and column of dea result matrix
st_matrixrowstripe(dearsltmat, DEARSLT_RS)
st_matrixcolstripe(dearsltmat, DEARSLT_CS)
}
/**
* deamat - dmucount x ( 1(theta) + dmu count + slcak(in, out) count)
*/
function _dmurank( string scalar deamat,
real scalar dmuincount,
real scalar dmuoutcount,
real scalar minrank,
real scalar tol )
{
real matrix M
real rowvector v, vv, retvec, slcaksum
real scalar m, mm, row, i, ii, w, ww
M = st_matrix(deamat)
v = round(M[,1], tol)
if (minrank) minindex(v, rows(v), i, w)
else maxindex(v, rows(v), i, w)
retvec = J(rows(v), 1, .)
if (allof(w[,2], 1)) {
retvec[i[1::rows(v)]] = (1::rows(v))
}
else {
// rank correction for ties
slcaksum = rowsum(M[|1,cols(M) - (dmuincount + dmuoutcount - 1)\.,.|])
for (m = 1; m <= rows(w); m++) {
if (w[m,2] >= 2) {
vv = i[w[m,1]::(w[m,1] + w[m,2] - 1)]
minindex(slcaksum[vv], w[m,2], ii, ww)
for (mm = 1; mm <= rows(ww); mm++) {
for (row = ww[mm,1]; row < ww[mm,1] + ww[mm,2]; row++) {
retvec[vv[ii[row]]] = w[m,1] + ww[mm,1] - 1
}
}
}
else {
retvec[i[w[m,1]]] = w[m,1] // row = w[m,1]
}
}
}
st_matrix("r(rank)", retvec)
}
function maxvecindex( string scalar vecname )
{
real matrix A
real scalar i, w
A = st_matrix(vecname)
maxindex(A, 1, i, w)
st_numscalar("r(maxval)", A[i[1]])
st_numscalar("r(maxindex)", i[1])
st_matrix("r(maxindexes)", i)
}
function minvecindex( string scalar vecname )
{
real matrix A
real scalar i, w
A = st_matrix(vecname)
if (sum(A :< .) > 0) {
minindex(A, 1, i, w)
st_numscalar("r(minval)", A[i[1]])
st_numscalar("r(minindex)", i[1])
st_matrix("r(minindexes)", i)
}
// if overall missing value.
else {
st_numscalar("r(minval)", .)
st_numscalar("r(minindex)", 0)
st_matrix("r(minindexes)", 0)
}
}
function _roundmat( string scalar matname, real scalar tol )
{
real matrix A
A = round(st_matrix(matname), tol)
st_matrix(matname, A)
}
function _uniqrowmat( string scalar matname, string scalar varname )
{
st_matrix(matname, sort(uniqrows(st_data(., varname)), 1))
}
function _file_exists( string scalar fn )
{
st_numscalar("r(fileexists)", fileexists(fn))
}
mata mlib create ldea, replace
mata mlib add ldea *()
mata mlib index
end
// End of the MATA Definition Area ---------------------------------------------
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/guan-mengni/STATA-DEA.git
[email protected]:guan-mengni/STATA-DEA.git
guan-mengni
STATA-DEA
STATA-DEA
master

搜索帮助