1 Star 0 Fork 4

3839/nn

forked from 麦叔/nn 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
3layer.py 1.44 KB
一键复制 编辑 原始数据 按行查看 历史
轻课网 提交于 2020-04-18 17:50 . abc
import numpy as np
def nonlin(x, deriv=False):
if(deriv == True):
return x*(1-x)
return 1/(1+np.exp(-x))
X = np.array([[0, 0, 1],
[0, 1, 1],
[1, 0, 1],
[1, 0, 0],
[1, 1, 1]])
y = np.array([[0],
[1],
[1],
[1],
[0]])
np.random.seed(1)
# randomly initialize our weights with mean 0
syn0 = 2*np.random.random((3, 4)) - 1
syn1 = 2*np.random.random((4, 1)) - 1
for j in range(100000):
# Feed forward through layers 0, 1, and 2
l0 = X
l1 = nonlin(np.dot(l0, syn0))
l2 = nonlin(np.dot(l1, syn1))
# how much did we miss the target value?
l2_error = y - l2
if (j % 10000) == 0:
print("Error:" + str(np.mean(np.abs(l2_error))))
# in what direction is the target value?
# were we really sure? if so, don't change too much.
l2_delta = l2_error*nonlin(l2, deriv=True)
# how much did each l1 value contribute to the l2 error (according to the weights)?
l1_error = l2_delta.dot(syn1.T)
# in what direction is the target l1?
# were we really sure? if so, don't change too much.
l1_delta = l1_error * nonlin(l1, deriv=True)
syn1 += l1.T.dot(l2_delta)
syn0 += l0.T.dot(l1_delta)
def predict(input):
l1 = nonlin(np.dot(input, syn0))
l2 = nonlin(np.dot(l1, syn1))
print(l2)
# print(syn0)
# print(syn1)
predict([0,1,1])
predict([1,0,1])
predict([1,0,0])
predict([0,0,1])
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/enwei/nn.git
[email protected]:enwei/nn.git
enwei
nn
nn
master

搜索帮助