代码拉取完成,页面将自动刷新
# --------------------------------------------------------
# SiamMask
# Licensed under The MIT License
# Written by Qiang Wang (wangqiang2015 at ia.ac.cn)
# --------------------------------------------------------
import os
import glob
from get_mask.test import *
from get_mask.models.custom import Custom
def get_frames(video_name):
if not video_name:
cap = cv2.VideoCapture(0)
# warmup
for i in range(5):
cap.read()
while True:
ret, frame = cap.read()
if ret:
yield frame
else:
break
elif video_name.endswith('avi') or \
video_name.endswith('mp4'):
cap = cv2.VideoCapture(video_name)
while True:
ret, frame = cap.read()
if ret:
yield frame
else:
break
else:
images = glob.glob(os.path.join(video_name, '*.jp*'))
images = sorted(images,
key=lambda x: int(x.split('/')[-1].split('.')[0]))
for img in images:
frame = cv2.imread(img)
yield frame
def mask(args):
# Setup device
args.config = 'get_mask/experiments/siammask/config_davis.json'
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
torch.backends.cudnn.benchmark = True
# Setup Model
cfg = load_config(args)
siammask = Custom(anchors=cfg['anchors'])
if args.resume:
assert isfile(args.resume), '{} is not a valid file'.format(args.resume)
siammask = load_pretrain(siammask, args.resume)
siammask.eval().to(device)
# Parse Image file
# img_files = sorted(glob.glob(join(args.base_path, '*.jp*')))
img_files = get_frames(args.data)
ims = [imf for imf in img_files]
# Select ROI
cv2.namedWindow("Get_mask", cv2.WND_PROP_FULLSCREEN)
# cv2.setWindowProperty("SiamMask", cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN)
try:
init_rect = cv2.selectROI('Get_mask', ims[0], False, False)
x, y, w, h = init_rect
except:
exit()
toc = 0
counter = 0
if not os.path.exists(os.path.join('results', '{}_mask'.format(args.data))):
os.makedirs(os.path.join('results', '{}_mask'.format(args.data)))
os.makedirs(os.path.join('results', '{}_frame'.format(args.data)))
for f, im in enumerate(ims):
tic = cv2.getTickCount()
if f == 0: # init
target_pos = np.array([x + w / 2, y + h / 2])
target_sz = np.array([w, h])
state = siamese_init(im, target_pos, target_sz, siammask, cfg['hp']) # init tracker
elif f > 0: # tracking
state = siamese_track(state, im, mask_enable=True, refine_enable=True) # track
location = state['ploygon'].flatten()
mask = state['mask'] > state['p'].seg_thr
mask = (mask * 255.).astype(np.uint8)
cv2.imwrite('results/{}_mask/{:05d}.png'.format(args.data, counter), mask)
cv2.imwrite('results/{}_frame/{:05d}.jpg'.format(args.data, counter), im)
counter += 1
im[:, :, 2] = (mask > 0) * 255 + (mask == 0) * im[:, :, 2]
cv2.polylines(im, [np.int0(location).reshape((-1, 1, 2))], True, (0, 255, 0), 3)
cv2.imshow('Get_mask', im)
key = cv2.waitKey(1)
if key > 0:
break
toc += cv2.getTickCount() - tic
toc /= cv2.getTickFrequency()
fps = f / toc
print('SiamMask Time: {:02.1f}s Speed: {:3.1f}fps (with visulization!)'.format(toc, fps))
cv2.destroyAllWindows()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。