代码拉取完成,页面将自动刷新
% octave cheatsheet
% not equals(~=)
1 ~=2 % => 1
% change prompt
PS1('>> ');
% semicolon suppresses output
% print
disp( 1+1)
disp(sprintf('2 decimals: %0.2f', 3.146))
format long
format short
% matrix
A = [1 2; 3 4 ; 5 6]
A =
1 2
3 4
5 6
% vector
v = [1; 2; 3]
% range fat vector
v = 1: 0.1: 1.5
v =
1.0000 1.1000 1.2000 1.3000 1.4000 1.5000
% matrix of ones
ones(2,3)
ans =
1 1 1
1 1 1
zeroes(1,3) % matrix of zeroes
rand(3,3) % matrix of random numbers
eye(3) # identity matrix
ans =
Diagonal Matrix
1 0 0
0 1 0
0 0 1
v = [1,2,3,4]
% length returns longest dimension
length(v) % => 4
% size returns matrix of size
size(v) % => [1,4]
% working with files
load file
load featuresX.dat
who % shows variables in current scope
whos % shows variables and size
clear featuresX % removes variable featuresX
% save to disk
v = [1;2;3;4;5]
save hello.mat v; % saves v to file hello.mat
clear % removes all variables in workspace
save hello.mat v -ascii; % save as text
A(3,2) % gets the value on row 3, column 2
A(2,:) % get every element in row 2
A = [A, [100; 101; 102]] % append another column to a
% ==============================
A = [1 2 ; 3 4 ; 5 6]
B = [11 12; 13 14; 15 16]
C = [1 1; 2 2]
% element wise multiplication (.*)
A .* B
ans =
11 24
39 56
75 96
abs(A) % absolute value
% transpose
A'
ans =
1 3 5
2 4 6
A = magic(3) % magic squares, all rows columns and diagonals add up to the same thing
[r,c] = find(A >= 7)
r =
1
3
2
c =
1
2
3
sum(A, 1) % sums rows
sum(A, 2) % sums columns
prod
floor
ceil
flipud(A) % flips matrix up down
pinv(A) % gives the inverse of A
% plotting
t = [0:0.01: 0.98];
y1 = sin(2*pi*4*t);
plot(t, y1);
y2 = cos(2*pi*4*t)
plot(t,y1);
hold on
plot(t,y2);
plot(t,y2, 'r');
xlabel('time')
ylabel('value')
legend('sin', 'cos')
title('my plot')
print -dpng 'myplot.png'
close
figure(1); plot(t,y1);
figure(2); plot(t,y2);
subplot(1,2,1); %divides plot a 1x2 grid access first element
plot(t, y1);
subplot(1,2,2)
plot(t, y2)
clf % clears figure
imagesc(A), colorbar, colormap gray;
% =================================
v = zeros(10,1)
for i = 1:10,
v(i) = 2^i;
end
indicies = 1:10
for i = indices,
disp(i);
end;
i = 1;
while i <= 5,
v(i) = 100;
i = i+1;
end;
i = 1;
while true,
v(i) = 999;
i = i + 1;
if i == 6,
break;
end;
end;
v(1) = 2
if v(1) = 2;
disp('the value is one');
elseif v(1) == 2,
disp('the value is true');
else
disp("the value is not one or two.");
end;
squareThisNumber.m
function y = squareThisNmber(x)
y = x^2;
suareAndCuebeThisNumber.m
function [y1,y2] = squareAndCubeThisNumber(x)
y1 = x^2;
y2 = x^3;
X = [1 1; 1 2; 1 3]
y = [1; 2; 3]
theta = [0;1];
costFunctionJ.m
function J = costFunctionJ(X, y, theta)
% X is the 'design matrix' containing our training examples
% y is the class labels
m = size(X, 1) % number of training examples
predictions = X*theta; % predictions of hypothesis on examples
sqrErrors = (predictions - y).^2; % squared errors
J = 1/(2*m) * sum(sqrErrors);
J % => 0
Theta1 = ones(10,11);
Theta2 = ones(10,11);
Theta3 = 3*ones(10,11);
thetaVec = [ Theta1(:); Theta2(:); Theta3(:)];
Theta1 == reshape(thetaVec(1:110), 10, 11)
gradApprox = (J(theta = EPSILON) - J(theta - EPSILON))/(2*EPSILON)
for i = 1:n,
thetaPlus = theta;
thetaPlus(i) = thetaPlus(i) + EPSILON;
thetaMinus = theta;
thetaMinus(i) = thetaMinus(i) - EPSILON;
gradApprox(i) = (J(thetaPlus) - J(thetaMinus))/(2*EPSILON);
end
% check that gradApprox ~ DVec
% - implement backprom to compute DVec (unrolled D1, D2, D3)
% - implement numerical gradient check to compute gradApprox
% - make sure they give similar values
% - TURN OFF gradient checking using backprob code for learning with
% NO gradient checking
optTheta = fminunc(@costFunction, initialTheta, options);
initialTheta = zeros(n,1); % can we do better?
% INIT_EPSILON is unrelated to EPSILON
Theta1 = rand(10,11) * (2*INIT_EPSILON) - INIT_EPSILON;
Theta1 = rand(1,11) * (2*INIT_EPSILON) - INIT_EPSILON;
load('ex3data1.mat');
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。