代码拉取完成,页面将自动刷新
"""Evaluating a trained model on the test data
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from datetime import datetime
import math
import time
import os
import numpy as np
import tensorflow as tf
import argparse
import arch
import data_loader
import sys
from PIL import Image
import imghdr
def evaluate(args):
# Building the graph
with tf.Graph().as_default() as g, tf.device('/cpu:0'):
# Get images and labels for CIFAR-10.
if args.save_predictions is None:
images, labels = data_loader.read_inputs(False, args)
else:
images, labels, urls = data_loader.read_inputs(False, args)
# Performing computations on a GPU
with tf.device('/gpu:0'):
# Build a Graph that computes the logits predictions from the
# inference model.
logits = arch.get_model(images, 0.0, False, args)
# Calculate predictions accuracies top-1 and top-n
top_1_op = tf.nn.in_top_k(logits, labels, 1)
top_n_op = tf.nn.in_top_k(logits, labels, args.top_n)
if args.save_predictions is not None:
topn = tf.nn.top_k(tf.nn.softmax(logits), args.top_n)
topnind= topn.indices
topnval= topn.values
saver = tf.train.Saver(tf.global_variables())
# Build the summary operation based on the TF collection of Summaries.
summary_op = tf.summary.merge_all()
summary_writer = tf.summary.FileWriter(args.log_dir, g)
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
ckpt = tf.train.get_checkpoint_state(args.log_dir)
# Load the latest model
if ckpt and ckpt.model_checkpoint_path:
# Restores from checkpoint
saver.restore(sess, ckpt.model_checkpoint_path)
else:
return
# Start the queue runners.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
true_predictions_count = 0 # Counts the number of correct predictions
true_topn_predictions_count = 0
all_count = 0
step = 0
predictions_format_str = ('%d,%s,%d,%s,%s\n')
batch_format_str = ('Batch Number: %d, Top-1 Hit: %d, Top-'+str(args.top_n)+' Hit: %d, Top-1 Accuracy: %.3f, Top-'+str(args.top_n)+' Accuracy: %.3f')
if args.save_predictions is not None:
out_file = open(args.save_predictions,'w')
while step < args.num_batches and not coord.should_stop():
if args.save_predictions is None:
top1_predictions, topn_predictions = sess.run([top_1_op, top_n_op])
else:
top1_predictions, topn_predictions, urls_values, label_values, topnguesses, topnconf = sess.run([top_1_op, top_n_op, urls, labels, topnind, topnval])
for i in xrange(0,urls_values.shape[0]):
out_file.write(predictions_format_str%(step*args.batch_size+i+1, urls_values[i], label_values[i],
'[' + ', '.join('%d' % item for item in topnguesses[i]) + ']',
'[' + ', '.join('%.4f' % item for item in topnconf[i]) + ']'))
out_file.flush()
true_predictions_count += np.sum(top1_predictions)
true_topn_predictions_count += np.sum(topn_predictions)
all_count+= top1_predictions.shape[0]
print(batch_format_str%(step, true_predictions_count, true_topn_predictions_count, true_predictions_count / all_count, true_topn_predictions_count / all_count))
sys.stdout.flush()
step += 1
if args.save_predictions is not None:
out_file.close()
summary = tf.Summary()
summary.ParseFromString(sess.run(summary_op))
coord.request_stop()
coord.join(threads)
def get_sess(args):
with tf.Graph().as_default() as g, tf.device('/gpu:0'):
input = tf.placeholder(dtype=tf.float32, shape=(None,args.load_size[0] ,args.load_size[1],args.num_channels))
logits = arch.get_model(input, 0.0, False,args)
saver = tf.train.Saver(tf.global_variables())
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
ckpt = tf.train.get_checkpoint_state('./model')
if ckpt and ckpt.model_checkpoint_path:
try:
saver.restore(sess, ckpt.model_checkpoint_path)
except Exception,e:
print(e)
print('Load Model ERROR ERROR!!!!!!!!!!!!!!!!')
sys.exit()
else:
print('model does not exist!! ,The program is going to quit!')
sys.exit()
return sess, logits, input
def standardization(img,width=400,height=400,channel=3):
num_compare = width*height*channel
img_arr = np.array(img)
img_std = (img_arr - np.mean(img_arr)) / max(np.std(img_arr), 1 / math.sqrt(num_compare))
return img_std
def test(args,image_folder='./img'):
sess, logits, input = get_sess(args)
for root, dirs, files in os.walk(image_folder):
for file in files:
item = os.path.join(root, file)
try:
item = unicode(item, 'utf-8')
except:
continue
out = 0
try:
if imghdr.what(os.path.join(root, file)) not in {'jpeg','jpg','rgb','gif','tif','bmp','png'}:
print('invalid image: {}'.format(os.path.join(root, file)))
continue
img = Image.open(item)
img = img.resize(args.load_size, Image.ANTIALIAS)
std_img = standardization(img)
imgs = [std_img]
eva_list = sess.run([logits], feed_dict={input: imgs})
out = np.argmax(eva_list)
except Exception, e:
print(e)
print('evaluate ERROR!!')
finally:
print(item,' Test result: ',out)
def main():
parser = argparse.ArgumentParser(description='Process Command-line Arguments')
parser.add_argument('--load_size', nargs= 2, default= [500,500], type= int, action= 'store', help= 'The width and height of images for loading from disk')
parser.add_argument('--crop_size', nargs= 2, default= [500,500], type= int, action= 'store', help= 'The width and height of images after random cropping')
parser.add_argument('--batch_size', default= 2, type= int, action= 'store', help= 'The testing batch size')
parser.add_argument('--num_classes', default= 4, type= int, action= 'store', help= 'The number of classes')
parser.add_argument('--num_channels', default= 3, type= int, action= 'store', help= 'The number of channels in input images')
parser.add_argument('--num_batches' , default=-1 , type= int, action= 'store', help= 'The number of batches of data')
parser.add_argument('--path_prefix' , default='./', action= 'store', help= 'The prefix address for images')
parser.add_argument('--delimiter' , default=' ', action = 'store', help= 'Delimiter for the input files')
parser.add_argument('--data_info' , default= 'val.txt', action= 'store', help= 'File containing the addresses and labels of testing images')
parser.add_argument('--num_threads', default= 4, type= int, action= 'store', help= 'The number of threads for loading data')
parser.add_argument('--architecture', default= 'resnet', help='The DNN architecture')
parser.add_argument('--depth', default= 50, type= int, help= 'The depth of ResNet architecture')
parser.add_argument('--log_dir', default= './model', action= 'store', help='Path for saving Tensorboard info and checkpoints')
parser.add_argument('--save_predictions', default= None, action= 'store', help= 'Save top-5 predictions of the networks along with their confidence in the specified file')
parser.add_argument('--top_n', default= 5, type= int, action= 'store', help= 'Specify the top-N accuracy')
parser.add_argument('--eval_model', default=False, type=bool, action='store', help='evaluate acc of model')
parser.add_argument('--test_images_path', default='./data/train_data', type=str, action='store', help='test images')
args = parser.parse_args()
args.num_samples = sum(1 for line in open(args.data_info))
if args.num_batches==-1:
if(args.num_samples%args.batch_size==0):
args.num_batches= int(args.num_samples/args.batch_size)
else:
args.num_batches= int(args.num_samples/args.batch_size)+1
print(args)
if args.eval_model:
evaluate(args)
if args.test_images_path != None:
test(args, image_folder=args.test_images_path)
if __name__ == '__main__':
main()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。