1 Star 0 Fork 1

cptbtptp2333/tacotron2

forked from 雲图/tacotron2 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
train.py 10.93 KB
一键复制 编辑 原始数据 按行查看 历史
Rafael Valle 提交于 2020-01-09 01:37 . train.py: printing correct variable
import os
import time
import argparse
import math
from numpy import finfo
import torch
from distributed import apply_gradient_allreduce
import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import DataLoader
from model import Tacotron2
from data_utils import TextMelLoader, TextMelCollate
from loss_function import Tacotron2Loss
from logger import Tacotron2Logger
from hparams import create_hparams
def reduce_tensor(tensor, n_gpus):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.reduce_op.SUM)
rt /= n_gpus
return rt
def init_distributed(hparams, n_gpus, rank, group_name):
assert torch.cuda.is_available(), "Distributed mode requires CUDA."
print("Initializing Distributed")
# Set cuda device so everything is done on the right GPU.
torch.cuda.set_device(rank % torch.cuda.device_count())
# Initialize distributed communication
dist.init_process_group(
backend=hparams.dist_backend, init_method=hparams.dist_url,
world_size=n_gpus, rank=rank, group_name=group_name)
print("Done initializing distributed")
def prepare_dataloaders(hparams):
# Get data, data loaders and collate function ready
trainset = TextMelLoader(hparams.training_files, hparams)
valset = TextMelLoader(hparams.validation_files, hparams)
collate_fn = TextMelCollate(hparams.n_frames_per_step)
if hparams.distributed_run:
train_sampler = DistributedSampler(trainset)
shuffle = False
else:
train_sampler = None
shuffle = True
train_loader = DataLoader(trainset, num_workers=1, shuffle=shuffle,
sampler=train_sampler,
batch_size=hparams.batch_size, pin_memory=False,
drop_last=True, collate_fn=collate_fn)
return train_loader, valset, collate_fn
def prepare_directories_and_logger(output_directory, log_directory, rank):
if rank == 0:
if not os.path.isdir(output_directory):
os.makedirs(output_directory)
os.chmod(output_directory, 0o775)
logger = Tacotron2Logger(os.path.join(output_directory, log_directory))
else:
logger = None
return logger
def load_model(hparams):
model = Tacotron2(hparams).cuda()
if hparams.fp16_run:
model.decoder.attention_layer.score_mask_value = finfo('float16').min
if hparams.distributed_run:
model = apply_gradient_allreduce(model)
return model
def warm_start_model(checkpoint_path, model, ignore_layers):
assert os.path.isfile(checkpoint_path)
print("Warm starting model from checkpoint '{}'".format(checkpoint_path))
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
model_dict = checkpoint_dict['state_dict']
if len(ignore_layers) > 0:
model_dict = {k: v for k, v in model_dict.items()
if k not in ignore_layers}
dummy_dict = model.state_dict()
dummy_dict.update(model_dict)
model_dict = dummy_dict
model.load_state_dict(model_dict)
return model
def load_checkpoint(checkpoint_path, model, optimizer):
assert os.path.isfile(checkpoint_path)
print("Loading checkpoint '{}'".format(checkpoint_path))
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
model.load_state_dict(checkpoint_dict['state_dict'])
optimizer.load_state_dict(checkpoint_dict['optimizer'])
learning_rate = checkpoint_dict['learning_rate']
iteration = checkpoint_dict['iteration']
print("Loaded checkpoint '{}' from iteration {}" .format(
checkpoint_path, iteration))
return model, optimizer, learning_rate, iteration
def save_checkpoint(model, optimizer, learning_rate, iteration, filepath):
print("Saving model and optimizer state at iteration {} to {}".format(
iteration, filepath))
torch.save({'iteration': iteration,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'learning_rate': learning_rate}, filepath)
def validate(model, criterion, valset, iteration, batch_size, n_gpus,
collate_fn, logger, distributed_run, rank):
"""Handles all the validation scoring and printing"""
model.eval()
with torch.no_grad():
val_sampler = DistributedSampler(valset) if distributed_run else None
val_loader = DataLoader(valset, sampler=val_sampler, num_workers=1,
shuffle=False, batch_size=batch_size,
pin_memory=False, collate_fn=collate_fn)
val_loss = 0.0
for i, batch in enumerate(val_loader):
x, y = model.parse_batch(batch)
y_pred = model(x)
loss = criterion(y_pred, y)
if distributed_run:
reduced_val_loss = reduce_tensor(loss.data, n_gpus).item()
else:
reduced_val_loss = loss.item()
val_loss += reduced_val_loss
val_loss = val_loss / (i + 1)
model.train()
if rank == 0:
print("Validation loss {}: {:9f} ".format(iteration, val_loss))
logger.log_validation(val_loss, model, y, y_pred, iteration)
def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus,
rank, group_name, hparams):
"""Training and validation logging results to tensorboard and stdout
Params
------
output_directory (string): directory to save checkpoints
log_directory (string) directory to save tensorboard logs
checkpoint_path(string): checkpoint path
n_gpus (int): number of gpus
rank (int): rank of current gpu
hparams (object): comma separated list of "name=value" pairs.
"""
if hparams.distributed_run:
init_distributed(hparams, n_gpus, rank, group_name)
torch.manual_seed(hparams.seed)
torch.cuda.manual_seed(hparams.seed)
model = load_model(hparams)
learning_rate = hparams.learning_rate
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate,
weight_decay=hparams.weight_decay)
if hparams.fp16_run:
from apex import amp
model, optimizer = amp.initialize(
model, optimizer, opt_level='O2')
if hparams.distributed_run:
model = apply_gradient_allreduce(model)
criterion = Tacotron2Loss()
logger = prepare_directories_and_logger(
output_directory, log_directory, rank)
train_loader, valset, collate_fn = prepare_dataloaders(hparams)
# Load checkpoint if one exists
iteration = 0
epoch_offset = 0
if checkpoint_path is not None:
if warm_start:
model = warm_start_model(
checkpoint_path, model, hparams.ignore_layers)
else:
model, optimizer, _learning_rate, iteration = load_checkpoint(
checkpoint_path, model, optimizer)
if hparams.use_saved_learning_rate:
learning_rate = _learning_rate
iteration += 1 # next iteration is iteration + 1
epoch_offset = max(0, int(iteration / len(train_loader)))
model.train()
is_overflow = False
# ================ MAIN TRAINNIG LOOP! ===================
for epoch in range(epoch_offset, hparams.epochs):
print("Epoch: {}".format(epoch))
for i, batch in enumerate(train_loader):
start = time.perf_counter()
for param_group in optimizer.param_groups:
param_group['lr'] = learning_rate
model.zero_grad()
x, y = model.parse_batch(batch)
y_pred = model(x)
loss = criterion(y_pred, y)
if hparams.distributed_run:
reduced_loss = reduce_tensor(loss.data, n_gpus).item()
else:
reduced_loss = loss.item()
if hparams.fp16_run:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
if hparams.fp16_run:
grad_norm = torch.nn.utils.clip_grad_norm_(
amp.master_params(optimizer), hparams.grad_clip_thresh)
is_overflow = math.isnan(grad_norm)
else:
grad_norm = torch.nn.utils.clip_grad_norm_(
model.parameters(), hparams.grad_clip_thresh)
optimizer.step()
if not is_overflow and rank == 0:
duration = time.perf_counter() - start
print("Train loss {} {:.6f} Grad Norm {:.6f} {:.2f}s/it".format(
iteration, reduced_loss, grad_norm, duration))
logger.log_training(
reduced_loss, grad_norm, learning_rate, duration, iteration)
if not is_overflow and (iteration % hparams.iters_per_checkpoint == 0):
validate(model, criterion, valset, iteration,
hparams.batch_size, n_gpus, collate_fn, logger,
hparams.distributed_run, rank)
if rank == 0:
checkpoint_path = os.path.join(
output_directory, "checkpoint_{}".format(iteration))
save_checkpoint(model, optimizer, learning_rate, iteration,
checkpoint_path)
iteration += 1
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-o', '--output_directory', type=str,
help='directory to save checkpoints')
parser.add_argument('-l', '--log_directory', type=str,
help='directory to save tensorboard logs')
parser.add_argument('-c', '--checkpoint_path', type=str, default=None,
required=False, help='checkpoint path')
parser.add_argument('--warm_start', action='store_true',
help='load model weights only, ignore specified layers')
parser.add_argument('--n_gpus', type=int, default=1,
required=False, help='number of gpus')
parser.add_argument('--rank', type=int, default=0,
required=False, help='rank of current gpu')
parser.add_argument('--group_name', type=str, default='group_name',
required=False, help='Distributed group name')
parser.add_argument('--hparams', type=str,
required=False, help='comma separated name=value pairs')
args = parser.parse_args()
hparams = create_hparams(args.hparams)
torch.backends.cudnn.enabled = hparams.cudnn_enabled
torch.backends.cudnn.benchmark = hparams.cudnn_benchmark
print("FP16 Run:", hparams.fp16_run)
print("Dynamic Loss Scaling:", hparams.dynamic_loss_scaling)
print("Distributed Run:", hparams.distributed_run)
print("cuDNN Enabled:", hparams.cudnn_enabled)
print("cuDNN Benchmark:", hparams.cudnn_benchmark)
train(args.output_directory, args.log_directory, args.checkpoint_path,
args.warm_start, args.n_gpus, args.rank, args.group_name, hparams)
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/cptbtptp2333/tacotron2.git
[email protected]:cptbtptp2333/tacotron2.git
cptbtptp2333
tacotron2
tacotron2
master

搜索帮助