代码拉取完成,页面将自动刷新
# model
IMAGE_SIZE : [128, 128] # load image size, if it's train mode, it will be randomly cropped to IMAGE_SIZE. If it's test mode, it will be resized to IMAGE_SIZE.
CHANNEL_X : 3 # input channel
CHANNEL_Y : 3 # output channel
TIMESTEPS : 100 # diffusion steps
SCHEDULE : 'linear' # linear or cosine
MODEL_CHANNELS : 32 # basic channels of Unet
NUM_RESBLOCKS : 1 # number of residual blocks
CHANNEL_MULT : [1,2,3,4] # channel multiplier of each layer
NUM_HEADS : 1
MODE : 1 # 1 Train, 0 Test
PRE_ORI : 'True' # if True, predict $x_0$, else predict $\epsilon$.
# train
PATH_GT : '' # path of ground truth
PATH_IMG : '' # path of input
BATCH_SIZE : 32 # training batch size
NUM_WORKERS : 16 # number of workers
ITERATION_MAX : 1000000 # max training iteration
LR : 0.0001 # learning rate
LOSS : 'L2' # L1 or L2
EMA_EVERY : 100 # update EMA every EMA_EVERY iterations
START_EMA : 2000 # start EMA after START_EMA iterations
SAVE_MODEL_EVERY : 10000 # save model every SAVE_MODEL_EVERY iterations
EMA: 'True' # if True, use EMA
CONTINUE_TRAINING : 'False' # if True, continue training
CONTINUE_TRAINING_STEPS : 10000 # continue training from CONTINUE_TRAINING_STEPS
PRETRAINED_PATH_INITIAL_PREDICTOR : '' # path of pretrained initial predictor
PRETRAINED_PATH_DENOISER : '' # path of pretrained denoiser
WEIGHT_SAVE_PATH : './checksave' # path to save model
TRAINING_PATH : './Training' # path of training data
BETA_LOSS : 50 # hyperparameter to balance the pixel loss and the diffusion loss
HIGH_LOW_FREQ : 'True' # if True, training with frequency separation
# test
NATIVE_RESOLUTION : 'False' # if True, test with native resolution
DPM_SOLVER : 'False' # if True, test with DPM_solver
DPM_STEP : 20 # DPM_solver step
BATCH_SIZE_VAL : 1 # test batch size
TEST_PATH_GT : '' # path of ground truth
TEST_PATH_IMG : '' # path of input
TEST_INITIAL_PREDICTOR_WEIGHT_PATH : '' # path of initial predictor
TEST_DENOISER_WEIGHT_PATH : '' # path of denoiser
TEST_IMG_SAVE_PATH : './results' # path to save results
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。