代码拉取完成,页面将自动刷新
What's new in Libevent 2.1
Nick Mathewson
0. Before we start
0.1. About this document
This document describes the key differences between Libevent 2.0 and
Libevent 2.1, from a user's point of view. It's a work in progress.
For better documentation about libevent, see the links at
http://libevent.org/
Libevent 2.1 would not be possible without the generous help of
numerous volunteers. For a list of who did what in Libevent 2.1,
please see the ChangeLog!
NOTE: I am very sure that I missed some thing on this list. Caveat
haxxor.
0.2. Where to get help
Try looking at the other documentation too. All of the header files
have documentation in the doxygen format; this gets turned into nice
HTML and linked to from the libevent.org website.
There is a work-in-progress book with reference manual at
http://www.wangafu.net/~nickm/libevent-book/ .
You can ask questions on the #libevent IRC channel at irc.oftc.net or
on the mailing list at [email protected]. The mailing list
is subscribers-only, so you will need to subscribe before you post.
0.3. Compatibility
Our source-compatibility policy is that correct code (that is to say,
code that uses public interfaces of Libevent and relies only on their
documented behavior) should have forward source compatibility: any
such code that worked with a previous version of Libevent should work
with this version too.
We don't try to do binary compatibility except within stable release
series, so binaries linked against any version of Libevent 2.0 will
probably need to be recompiled against Libevent 2.1.4-alpha if you
want to use it. It is probable that we'll break binary compatibility
again before Libevent 2.1 is stable.
1. New APIs and features
1.1. New ways to build libevent
We now provide an --enable-gcc-hardening configure option to turn on
GCC features designed for increased code security.
There is also an --enable-silent-rules configure option to make
compilation run more quietly with automake 1.11 or later.
You no longer need to use the --enable-gcc-warnings option to turn on
all of the GCC warnings that Libevent uses. The only change from
using that option now is to turn warnings into errors.
For IDE users, files that are not supposed to be built are now
surrounded with appropriate #ifdef lines to keep your IDE from getting
upset.
There is now an alternative cmake-based build process; cmake users
should see the relevant sections in the README.
1.2. New functions for events and the event loop
If you're running Libevent with multiple event priorities, you might
want to make sure that Libevent checks for new events frequently, so
that time-consuming or numerous low-priority events don't keep it from
checking for new high-priority events. You can now use the
event_config_set_max_dispatch_interval() interface to ensure that the
loop checks for new events either every N microseconds, every M
callbacks, or both.
When configuring an event base, you can now choose whether you want
timers to be more efficient, or more precise. (This only has effect
on Linux for now.) Timers are efficient by default: to select more
precise timers, use the EVENT_BASE_FLAG_PRECISE_TIMER flag when
constructing the event_config, or set the EVENT_PRECISE_TIMER
environment variable to a non-empty string.
There is an EVLOOP_NO_EXIT_ON_EMPTY flag that tells event_base_loop()
to keep looping even when there are no pending events. (Ordinarily,
event_base_loop() will exit as soon as no events are pending.)
Past versions of Libevent have been annoying to use with some
memory-leak-checking tools, because Libevent allocated some global
singletons but provided no means to free them. There is now a
function, libevent_global_shutdown(), that you can use to free all
globally held resources before exiting, so that your leak-check tools
don't complain. (Note: this function doesn't free non-global things
like events, bufferevents, and so on; and it doesn't free anything
that wouldn't otherwise get cleaned up by the operating system when
your process exit()s. If you aren't using a leak-checking tool, there
is not much reason to call libevent_global_shutdown().)
There is a new event_base_get_npriorities() function to return the
number of priorities set in the event base.
Libevent 2.0 added an event_new() function to construct a new struct
event on the heap. Unfortunately, with event_new(), there was no
equivalent for:
struct event ev;
event_assign(&ev, base, fd, EV_READ, callback, &ev);
In other words, there was no easy way for event_new() to set up an
event so that the event itself would be its callback argument.
Libevent 2.1 lets you do this by passing "event_self_cbarg()" as the
callback argument:
struct event *evp;
evp = event_new(base, fd, EV_READ, callback,
event_self_cbarg());
There's also a new event_base_get_running_event() function you can
call from within a Libevent callback to get a pointer to the current
event. This should never be strictly necessary, but it's sometimes
convenient.
The event_base_once() function used to leak some memory if the event
that it added was never actually triggered. Now, its memory is
tracked in the event_base and freed when the event_base is freed.
Note however that Libevent doesn't know how to free any information
passed as the callback argument to event_base_once is still something
you'll might need a way to de-allocate yourself.
There is an event_get_priority() function to return an event's
priority.
By analogy to event_base_loopbreak(), there is now an
event_base_loopcontinue() that tells Libevent to stop processing
active event callbacks, and re-scan for new events right away.
There's a function, event_base_foreach_event(), that can iterate over
every event currently pending or active on an event base, and invoke a
user-supplied callback on each. The callback must not alter the events
or add or remove anything to the event base.
We now have an event_remove_timer() function to remove the timeout on
an event while leaving its socket and/or signal triggers unchanged.
(If we were designing the API from scratch, this would be the behavior
of "event_add(ev, NULL)" on an already-added event with a timeout. But
that's a no-op in past versions of Libevent, and we don't want to
break compatibility.)
You can use the new event_base_get_num_events() function to find the
number of events active or pending on an event_base. To find the
largest number of events that there have been since the last call, use
event_base_get_max_events().
You can now activate all the events waiting for a given fd or signal
using the event_base_active_by_fd() and event_base_active_by_signal()
APIs.
On backends that support it (currently epoll), there is now an
EV_CLOSED flag that programs can use to detect when a socket has
closed without having to read all the bytes until receiving an EOF.
1.3. Event finalization
[NOTE: This is an experimental feature in Libevent 2.1.3-alpha. Though
it seems solid so far, its API might change between now and the first
release candidate for Libevent 2.1.]
1.3.1. Why event finalization?
Libevent 2.1 now supports an API for safely "finalizing" events that
might be running in multiple threads, and provides a way to slightly
change the semantics of event_del() to prevent deadlocks in
multithreaded programs.
To motivate this feature, consider the following code, in the context
of a mulithreaded Libevent application:
struct connection *conn = event_get_callback_arg(ev);
event_del(ev);
connection_free(conn);
Suppose that the event's callback might be running in another thread,
and using the value of "conn" concurrently. We wouldn't want to
execute the connection_free() call until "conn" is no longer in use.
How can we make this code safe?
Libevent 2.0 answered that question by saying that the event_del()
call should block if the event's callback is running in another
thread. That way, we can be sure that event_del() has canceled the
callback (if the callback hadn't started running yet), or has waited
for the callback to finish.
But now suppose that the data structure is protected by a lock, and we
have the following code:
void check_disable(struct connection *connection) {
lock(connection);
if (should_stop_reading(connection))
event_del(connection->read_event);
unlock(connection);
}
What happens when we call check_disable() from a callback and from
another thread? Let's say that the other thread gets the lock
first. If it decides to call event_del(), it will wait for the
callback to finish. But meanwhile, the callback will be waiting for
the lock on the connection. Since each threads is waiting for the
other one to release a resource, the program will deadlock.
This bug showed up in multithreaded bufferevent programs in 2.1,
particularly when freeing bufferevents. (For more information, see
the "Deadlock when calling bufferevent_free from an other thread"
thread on libevent-users starting on 6 August 2012 and running through
February of 2013. You might also like to read my earlier writeup at
http://archives.seul.org/libevent/users/Feb-2012/msg00053.html and
the ensuing discussion.)
1.3.2. The EV_FINALIZE flag and avoiding deadlock
To prevent the deadlock condition described above, Libevent
2.1.3-alpha adds a new flag, "EV_FINALIZE". You can pass it to
event_new() and event_assign() along with EV_READ, EV_WRITE, and the
other event flags.
When an event is constructed with the EV_FINALIZE flag, event_del()
will not block on that event, even when the event's callback is
running in another thread. By using EV_FINALIZE, you are therefore
promising not to use the "event_del(ev); free(event_get_callback_arg(ev));"
pattern, but rather to use one of the finalization functions below to
clean up the event.
EV_FINALIZE has no effect on a single-threaded program, or on a
program where events are only used from one thread.
There are also two new variants of event_del() that you can use for
more fine-grained control:
event_del_noblock(ev)
event_del_block(ev)
The event_del_noblock() function will never block, even if the event
callback is running in another thread and doesn't have the EV_FINALIZE
flag. The event_del_block() function will _always_ block if the event
callback is running in another thread, even if the event _does_ have
the EV_FINALIZE flag.
[A future version of Libevent may have a way to make the EV_FINALIZE
flag the default.]
1.3.3. Safely finalizing events
To safely tear down an event that may be running, Libevent 2.1.3-alpha
introduces event_finalize() and event_free_finalize(). You call them
on an event, and provide a finalizer callback to be run on the event
and its callback argument once the event is definitely no longer
running.
With event_free_finalize(), the event is also freed once the finalizer
callback has been invoked.
A finalized event cannot be re-added or activated. The finalizer
callback must not add events, activate events, or attempt to
"resucitate" the event being finalized in any way.
If any finalizer callbacks are pending as the event_base is being
freed, they will be invoked. You can override this behavior with the
new function event_base_free_nofinalize().
1.4. New debugging features
You can now turn on debug logs at runtime using a new function,
event_enable_debug_logging().
The event_enable_lock_debugging() function is now spelled correctly.
You can still use the old "event_enable_lock_debuging" name, though,
so your old programs shouldnt' break.
There's also been some work done to try to make the debugging logs
more generally useful.
1.5. New evbuffer functions
In Libevent 2.0, we introduced evbuffer_add_file() to add an entire
file's contents to an evbuffer, and then send them using sendfile() or
mmap() as appropriate. This API had some drawbacks, however.
Notably, it created one mapping or fd for every instance of the same
file added to any evbuffer. Also, adding a file to an evbuffer could
make that buffer unusable with SSL bufferevents, filtering
bufferevents, and any code that tried to read the contents of the
evbuffer.
Libevent 2.1 adds a new evbuffer_file_segment API to solve these
problems. Now, you can use evbuffer_file_segment_new() to construct a
file-segment object, and evbuffer_add_file_segment() to insert it (or
part of it) into an evbuffer. These segments avoid creating redundant
maps or fds. Better still, the code is smart enough (when the OS
supports sendfile) to map the file when that's necessary, and use
sendfile() otherwise.
File segments can receive callback functions that are invoked when the
file segments are freed.
The evbuffer_ptr interface has been extended so that an evbuffer_ptr
can now yield a point just after the end of the buffer. This makes
many algorithms simpler to implement.
There's a new evbuffer_add_buffer() interface that you can use to add
one buffer to another nondestructively. When you say
evbuffer_add_buffer_reference(outbuf, inbuf), outbuf now contains a
reference to the contents of inbuf.
To aid in adding data in bulk while minimizing evbuffer calls, there
is an evbuffer_add_iovec() function.
There's a new evbuffer_copyout_from() variant function to enable
copying data nondestructively from the middle of a buffer.
evbuffer_readln() now supports an EVBUFFER_EOL_NUL argument to fetch
NUL-terminated strings from buffers.
1.6. New functions and features: bufferevents
You can now use the bufferevent_getcb() function to find out a
bufferevent's callbacks. Previously, there was no supported way to do
that.
The largest chunk readable or writeable in a single bufferevent
callback is no longer hardcoded; it's now configurable with
the new functions bufferevent_set_max_single_read() and
bufferevent_set_max_single_write().
For consistency, OpenSSL bufferevents now make sure to always set one
of BEV_EVENT_READING or BEV_EVENT_WRITING when invoking an event
callback.
Calling bufferevent_set_timeouts(bev, NULL, NULL) now removes the
timeouts from socket and ssl bufferevents correctly.
You can find the priority at which a bufferevent runs with
bufferevent_get_priority().
The function bufferevent_get_token_bucket_cfg() can retrieve the
rate-limit settings for a bufferevent; bufferevent_getwatermark() can
return a bufferevent's current watermark settings.
You can manually trigger a bufferevent's callbacks via
bufferevent_trigger() and bufferevent_trigger_event().
1.7. New functions and features: evdns
The previous evdns interface used an "open a test UDP socket" trick in
order to detect IPv6 support. This was a hack, since it would
sometimes badly confuse people's firewall software, even though no
packets were sent. The current evdns interface-detection code uses
the appropriate OS functions to see which interfaces are configured.
The evdns_base_new() function now has multiple possible values for its
second (flags) argument. Using 1 and 0 have their old meanings, though the
1 flag now has a symbolic name of EVDNS_BASE_INITIALIZE_NAMESERVERS.
A second flag is now supported too: the EVDNS_BASE_DISABLE_WHEN_INACTIVE
flag, which tells the evdns_base that it should not prevent Libevent from
exiting while it has no DNS requests in progress.
There is a new evdns_base_clear_host_addresses() function to remove
all the /etc/hosts addresses registered with an evdns instance.
1.8. New functions and features: evconnlistener
Libevent 2.1 adds the following evconnlistener flags:
LEV_OPT_DEFERRED_ACCEPT -- Tells the OS that it doesn't need to
report sockets as having arrived until the initiator has sent some
data too. This can greatly improve performance with protocols like
HTTP where the client always speaks first. On operating systems
that don't support this functionality, this option has no effect.
LEV_OPT_DISABLED -- Creates an evconnlistener in the disabled (not
listening) state.
Libevent 2.1 changes the behavior of the LEV_OPT_CLOSE_ON_EXEC
flag. Previously, it would apply to the listener sockets, but not to
the accepted sockets themselves. That's almost never what you want.
Now, it applies both to the listener and the accepted sockets.
1.9. New functions and features: evhttp
**********************************************************************
NOTE: The evhttp module will eventually be deprecated in favor of Mark
Ellzey's libevhtp library. Don't worry -- this won't happen until
libevhtp provides every feature that evhttp does, and provides a
compatible interface that applications can use to migrate.
**********************************************************************
Previously, you could only set evhttp timeouts in increments of one
second. Now, you can use evhttp_set_timeout_tv() and
evhttp_connection_set_timeout_tv() to configure
microsecond-granularity timeouts.
There are a new pair of functions: evhttp_set_bevcb() and
evhttp_connection_base_bufferevent_new(), that you can use to
configure which bufferevents will be used for incoming and outgoing
http connections respectively. These functions, combined with SSL
bufferevents, should enable HTTPS support.
There's a new evhttp_foreach_bound_socket() function to iterate over
every listener on an evhttp object.
Whitespace between lines in headers is now folded into a single space;
whitespace at the end of a header is now removed.
The socket errno value is now preserved when invoking an http error
callback.
There's a new kind of request callback for errors; you can set it with
evhttp_request_set_error_cb(). It gets called when there's a request error,
and actually reports the error code and lets you figure out which request
failed.
You can navigate from an evhttp_connection back to its evhttp with the
new evhttp_connection_get_server() function.
You can override the default HTTP Content-Type with the new
evhttp_set_default_content_type() function
There's a new evhttp_connection_get_addr() API to return the peer
address of an evhttp_connection.
The new evhttp_send_reply_chunk_with_cb() is a variant of
evhttp_send_reply_chunk() with a callback to be invoked when the
chunk is sent.
The evhttp_request_set_header_cb() facility adds a callback to be
invoked while parsing headers.
The evhttp_request_set_on_complete_cb() facility adds a callback to be
invoked on request completion.
1.10. New functions and features: evutil
There's a function "evutil_secure_rng_set_urandom_device_file()" that
you can use to override the default file that Libevent uses to seed
its (sort-of) secure RNG.
2. Cross-platform performance improvements
2.1. Better data structures
We replaced several users of the sys/queue.h "TAILQ" data structure
with the "LIST" data structure. Because this data type doesn't
require FIFO access, it requires fewer pointer checks and
manipulations to keep it in line.
All previous versions of Libevent have kept every pending (added)
event in an "eventqueue" data structure. Starting in Libevent 2.0,
however, this structure became redundant: every pending timeout event
is stored in the timeout heap or in one of the common_timeout queues,
and every pending fd or signal event is stored in an evmap. Libevent
2.1 removes this data structure, and thereby saves all of the code
that we'd been using to keep it updated.
2.2. Faster activations and timeouts
It's a common pattern in older code to use event_base_once() with a
0-second timeout to ensure that a callback will get run 'as soon as
possible' in the current iteration of the Libevent loop. We optimize
this case by calling event_active() directly, and bypassing the
timeout pool. (People who are using this pattern should also consider
using event_active() themselves.)
Libevent 2.0 would wake up a polling event loop whenever the first
timeout in the event loop was adjusted--whether it had become earlier
or later. We now only notify the event loop when a change causes the
expiration time to become _sooner_ than it would have been otherwise.
The timeout heap code is now optimized to perform fewer comparisons
and shifts when changing or removing a timeout.
Instead of checking for a wall-clock time jump every time we call
clock_gettime(), we now check only every 5 seconds. This should save
a huge number of gettimeofday() calls.
2.3. Microoptimizations
Internal event list maintainance no longer use the antipattern where
we have one function with multiple totally independent behaviors
depending on an argument:
#define OP1 1
#define OP2 2
#define OP3 3
void func(int operation, struct event *ev) {
switch (op) {
...
}
}
Instead, these functions are now split into separate functions for
each operation:
void func_op1(struct event *ev) { ... }
void func_op2(struct event *ev) { ... }
void func_op3(struct event *ev) { ... }
This produces better code generation and inlining decisions on some
compilers, and makes the code easier to read and check.
2.4. Evbuffer performance improvements
The EVBUFFER_EOL_CRLF line-ending type is now much faster, thanks to
smart optimizations.
2.5. HTTP performance improvements
o Performance tweak to evhttp_parse_request_line. (aee1a97 Mark Ellzey)
o Add missing break to evhttp_parse_request_line (0fcc536)
2.6. Coarse timers by default on Linux
Due to limitations of the epoll interface, Libevent programs using epoll
have not previously been able to wait for timeouts with accuracy smaller
than 1 millisecond. But Libevent had been using CLOCK_MONOTONIC for
timekeeping on Linux, which is needlessly expensive: CLOCK_MONOTONIC_COARSE
has approximately the resolution corresponding to epoll, and is much faster
to invoke than CLOCK_MONOTONIC.
To disable coarse timers, and get a more plausible precision, use the
new EVENT_BASE_FLAG_PRECISE_TIMER flag when setting up your event base.
3. Backend/OS-specific improvements
3.1. Linux-specific improvements
The logic for deciding which arguements to use with epoll_ctl() is now
a table-driven lookup, rather than the previous pile of cascading
branches. This should minimize epoll_ctl() calls and make the epoll
code run a little faster on change-heavy loads.
Libevent now takes advantage of Linux's support for enhanced APIs
(e.g., SOCK_CLOEXEC, SOCK_NONBLOCK, accept4, pipe2) that allow us to
simultaneously create a socket, make it nonblocking, and make it
close-on-exec. This should save syscalls throughout our codebase, and
avoid race-conditions if an exec() occurs after a socket is socket is
created but before we can make it close-on-execute on it.
3.2. Windows-specific improvements
We now use GetSystemTimeAsFileTime to implement gettimeofday. It's
significantly faster and more accurate than our old ftime()-based approach.
3.3. Improvements in the solaris evport backend.
The evport backend has been updated to use many of the infrastructure
improvements from Libevent 2.0. Notably, it keeps track of per-fd
information using the evmap infrastructure, and removes a number of
linear scans over recently-added events. This last change makes it
efficient to receive many more events per evport_getn() call, thereby
reducing evport overhead in general.
3.4. OSX backend improvements
The OSX select backend doesn't like to have more than a certain number
of fds set unless an "unlimited select" option has been set.
Therefore, we now set it.
3.5. Monotonic clocks on even more platforms
Libevent previously used a monotonic clock for its internal timekeeping
only on platforms supporting the POSIX clock_gettime() interface. Now,
Libevent has support for monotonic clocks on OSX and Windows too, and a
fallback implementation for systems without monotonic clocks that will at
least keep time running forwards.
Using monotonic timers makes Libevent more resilient to changes in the
system time, as can happen in small amounts due to clock adjustments from
NTP, or in large amounts due to users who move their system clocks all over
the timeline in order to keep nagware from nagging them.
3.6. Faster cross-thread notification on kqueue
When a thread other than the one in which the main event loop is
running needs to wake the thread running the main event loop, Libevent
usually writes to a socketpair in order to force the main event loop
to wake up. On Linux, we've been able to use eventfd() instead. Now
on BSD and OSX systems (any anywhere else that has kqueue with the
EVFILT_USER extension), we can use EVFILT_USER to wake up the main
thread from kqueue. This should be a tiny bit faster than the
previous approach.
4. Infrastructure improvements
4.1. Faster tests
I've spent some time to try to make the unit tests run faster in
Libevent 2.1. Nearly all of this was a matter of searching slow tests
for unreasonably long timeouts, and cutting them down to reasonably
long delays, though on one or two cases I actually had to parallelize
an operation or improve an algorithm.
On my desktop, a full "make verify" run of Libevent 2.0.18-stable
requires about 218 seconds. Libevent 2.1.1-alpha cuts this down to
about 78 seconds.
Faster unit tests are great, since they let programmers test their
changes without losing their train of thought.
4.2. Finicky tests are now off-by-default
The Tinytest unit testing framework now supports optional tests, and
Libevent uses them. By default, Libevent's unit testing framework
does not run tests that require a working network, and does not run
tests that tend to fail on heavily loaded systems because of timing
issues. To re-enable all tests, run ./test/regress using the "@all"
alias.
4.3. Modernized use of autotools
Our autotools-based build system has been updated to build without
warnings on recent autoconf/automake versions.
Libevent's autotools makefiles are no longer recursive. This allows
make to use the maximum possible parallelism to do the minimally
necessary amount of work. See Peter Miller's "Recursive Make
Considered Harmful" at http://miller.emu.id.au/pmiller/books/rmch/ for
more information here.
We now use the "quiet build" option to suppress distracting messages
about which commandlines are running. You can get them back with
"make V=1".
4.4. Portability
Libevent now uses large-file support internally on platforms where it
matters. You shouldn't need to set _LARGEFILE or OFFSET_BITS or
anything magic before including the Libevent headers, either, since
Libevent now sets the size of ev_off_t to the size of off_t that it
received at compile time, not to some (possibly different) size based
on current macro definitions when your program is building.
We now also use the Autoconf AC_USE_SYSTEM_EXTENSIONS mechanism to
enable per-system macros needed to enable not-on-by-default features.
Unlike the rest of the autoconf macros, we output these to an
internal-use-only evconfig-private.h header, since their names need to
survive unmangled. This lets us build correctly on more platforms,
and avoid inconsistencies when some files define _GNU_SOURCE and
others don't.
Libevent now tries to detect OpenSSL via pkg-config.
4.5. Standards conformance
Previous Libevent versions had no consistent convention for internal
vs external identifiers, and used identifiers starting with the "_"
character throughout the codebase. That's no good, since the C
standard says that identifiers beginning with _ are reserved. I'm not
aware of having any collisions with system identifiers, but it's best
to fix these things before they cause trouble.
We now avoid all use of the _identifiers in the Libevent source code.
These changes were made *mainly* through the use of automated scripts,
so there shouldn't be any mistakes, but you never know.
As an exception, the names _EVENT_LOG_DEBUG, _EVENT_LOG_MSG_,
_EVENT_LOG_WARN, and _EVENT_LOG_ERR are still exposed in event.h: they
are now deprecated, but to support older code, they will need to stay
around for a while. New code should use EVENT_LOG_DEBUG,
EVENT_LOG_MSG, EVENT_LOG_WARN, and EVENT_LOG_ERR instead.
4.6. Event and callback refactoring
As a simplification and optimization to Libevent's "deferred callback"
logic (introduced in 2.0 to avoid callback recursion), Libevent now
treats all of its deferrable callback types using the same logic it
uses for active events. Now deferred events no longer cause priority
inversion, no longer require special code to cancel them, and so on.
Regular events and deferred callbacks now both descend from an
internal light-weight event_callback supertype, and both support
priorities and take part in the other anti-priority-inversion
mechanisms in Libevent.
To avoid starvation from callback recursion (which was the reason we
introduced "deferred callbacks" in the first place) the implementation
now allows an event callback to be scheduled as "active later":
instead of running in the current iteration of the event loop, it runs
in the next one.
5. Testing
Libevent's test coverage level is more or less unchanged since before:
we still have over 80% line coverage in our tests on Linux and OSX.
There are some under-tested modules, though: we need to fix those.
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。