代码拉取完成,页面将自动刷新
同步操作将从 王志伟/PFLD-pytorch 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
# ------------------------------------------------------------------------------
# Copyright (c) Zhichao Zhao
# Licensed under the MIT License.
# Created by Zhichao zhao(zhaozhichao4515@gmail.com)
# ------------------------------------------------------------------------------
import argparse
import time
import cv2
import numpy as np
from matplotlib import pyplot as plt
from scipy.integrate import simps
import torch
from torchvision import transforms
from torch.utils.data import DataLoader
import torch.backends.cudnn as cudnn
from dataset.datasets import WLFWDatasets
from models.pfld import PFLDInference
cudnn.benchmark = True
cudnn.determinstic = True
cudnn.enabled = True
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def compute_nme(preds, target):
""" preds/target:: numpy array, shape is (N, L, 2)
N: batchsize L: num of landmark
"""
N = preds.shape[0]
L = preds.shape[1]
rmse = np.zeros(N)
for i in range(N):
pts_pred, pts_gt = preds[i, ], target[i, ]
if L == 19: # aflw
interocular = 34 # meta['box_size'][i]
elif L == 29: # cofw
interocular = np.linalg.norm(pts_gt[8, ] - pts_gt[9, ])
elif L == 68: # 300w
# interocular
interocular = np.linalg.norm(pts_gt[36, ] - pts_gt[45, ])
elif L == 98:
interocular = np.linalg.norm(pts_gt[60, ] - pts_gt[72, ])
else:
raise ValueError('Number of landmarks is wrong')
rmse[i] = np.sum(np.linalg.norm(pts_pred - pts_gt,
axis=1)) / (interocular * L)
return rmse
def compute_auc(errors, failureThreshold, step=0.0001, showCurve=True):
nErrors = len(errors)
xAxis = list(np.arange(0., failureThreshold + step, step))
ced = [float(np.count_nonzero([errors <= x])) / nErrors for x in xAxis]
AUC = simps(ced, x=xAxis) / failureThreshold
failureRate = 1. - ced[-1]
if showCurve:
plt.plot(xAxis, ced)
plt.show()
return AUC, failureRate
def validate(wlfw_val_dataloader, pfld_backbone):
pfld_backbone.eval()
nme_list = []
cost_time = []
with torch.no_grad():
for img, landmark_gt, _, _ in wlfw_val_dataloader:
img = img.to(device)
landmark_gt = landmark_gt.to(device)
pfld_backbone = pfld_backbone.to(device)
start_time = time.time()
_, landmarks = pfld_backbone(img)
cost_time.append(time.time() - start_time)
landmarks = landmarks.cpu().numpy()
landmarks = landmarks.reshape(landmarks.shape[0], -1,
2) # landmark
landmark_gt = landmark_gt.reshape(landmark_gt.shape[0], -1,
2).cpu().numpy() # landmark_gt
if args.show_image:
show_img = np.array(
np.transpose(img[0].cpu().numpy(), (1, 2, 0)))
show_img = (show_img * 255).astype(np.uint8)
np.clip(show_img, 0, 255)
pre_landmark = landmarks[0] * [112, 112]
cv2.imwrite("show_img.jpg", show_img)
img_clone = cv2.imread("show_img.jpg")
for (x, y) in pre_landmark.astype(np.int32):
cv2.circle(img_clone, (x, y), 1, (255, 0, 0), -1)
cv2.imshow("show_img.jpg", img_clone)
cv2.waitKey(0)
nme_temp = compute_nme(landmarks, landmark_gt)
for item in nme_temp:
nme_list.append(item)
# nme
print('nme: {:.4f}'.format(np.mean(nme_list)))
# auc and failure rate
failureThreshold = 0.1
auc, failure_rate = compute_auc(nme_list, failureThreshold)
print('auc @ {:.1f} failureThreshold: {:.4f}'.format(
failureThreshold, auc))
print('failure_rate: {:}'.format(failure_rate))
# inference time
print("inference_cost_time: {0:4f}".format(np.mean(cost_time)))
def main(args):
checkpoint = torch.load(args.model_path, map_location=device)
pfld_backbone = PFLDInference().to(device)
pfld_backbone.load_state_dict(checkpoint['pfld_backbone'])
transform = transforms.Compose([transforms.ToTensor()])
wlfw_val_dataset = WLFWDatasets(args.test_dataset, transform)
wlfw_val_dataloader = DataLoader(wlfw_val_dataset,
batch_size=1,
shuffle=False,
num_workers=0)
validate(wlfw_val_dataloader, pfld_backbone)
def parse_args():
parser = argparse.ArgumentParser(description='Testing')
parser.add_argument('--model_path',
default="./checkpoint/snapshot/checkpoint.pth.tar",
type=str)
parser.add_argument('--test_dataset',
default='./data/test_data/list.txt',
type=str)
parser.add_argument('--show_image', default=False, type=bool)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
main(args)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。