1 Star 0 Fork 0

乾坤瞬间/CodeFormer

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
inference_codeformer.py 12.39 KB
一键复制 编辑 原始数据 按行查看 历史
import os
import cv2
import argparse
import glob
import torch
from torchvision.transforms.functional import normalize
from basicsr.utils import imwrite, img2tensor, tensor2img
from basicsr.utils.download_util import load_file_from_url
from basicsr.utils.misc import gpu_is_available, get_device
from facelib.utils.face_restoration_helper import FaceRestoreHelper
from facelib.utils.misc import is_gray
from basicsr.utils.registry import ARCH_REGISTRY
pretrain_model_url = {
'restoration': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth',
}
def set_realesrgan():
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils.realesrgan_utils import RealESRGANer
use_half = False
if torch.cuda.is_available(): # set False in CPU/MPS mode
no_half_gpu_list = ['1650', '1660'] # set False for GPUs that don't support f16
if not True in [gpu in torch.cuda.get_device_name(0) for gpu in no_half_gpu_list]:
use_half = True
model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=23,
num_grow_ch=32,
scale=2,
)
upsampler = RealESRGANer(
scale=2,
model_path="https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth",
model=model,
tile=args.bg_tile,
tile_pad=40,
pre_pad=0,
half=use_half
)
if not gpu_is_available(): # CPU
import warnings
warnings.warn('Running on CPU now! Make sure your PyTorch version matches your CUDA.'
'The unoptimized RealESRGAN is slow on CPU. '
'If you want to disable it, please remove `--bg_upsampler` and `--face_upsample` in command.',
category=RuntimeWarning)
return upsampler
if __name__ == '__main__':
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device = get_device()
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--input_path', type=str, default='./inputs/whole_imgs',
help='Input image, video or folder. Default: inputs/whole_imgs')
parser.add_argument('-o', '--output_path', type=str, default=None,
help='Output folder. Default: results/<input_name>_<w>')
parser.add_argument('-w', '--fidelity_weight', type=float, default=0.5,
help='Balance the quality and fidelity. Default: 0.5')
parser.add_argument('-s', '--upscale', type=int, default=2,
help='The final upsampling scale of the image. Default: 2')
parser.add_argument('--has_aligned', action='store_true', help='Input are cropped and aligned faces. Default: False')
parser.add_argument('--only_center_face', action='store_true', help='Only restore the center face. Default: False')
parser.add_argument('--draw_box', action='store_true', help='Draw the bounding box for the detected faces. Default: False')
# large det_model: 'YOLOv5l', 'retinaface_resnet50'
# small det_model: 'YOLOv5n', 'retinaface_mobile0.25'
parser.add_argument('--detection_model', type=str, default='retinaface_resnet50',
help='Face detector. Optional: retinaface_resnet50, retinaface_mobile0.25, YOLOv5l, YOLOv5n, dlib. \
Default: retinaface_resnet50')
parser.add_argument('--bg_upsampler', type=str, default='None', help='Background upsampler. Optional: realesrgan')
parser.add_argument('--face_upsample', action='store_true', help='Face upsampler after enhancement. Default: False')
parser.add_argument('--bg_tile', type=int, default=400, help='Tile size for background sampler. Default: 400')
parser.add_argument('--suffix', type=str, default=None, help='Suffix of the restored faces. Default: None')
parser.add_argument('--save_video_fps', type=float, default=None, help='Frame rate for saving video. Default: None')
args = parser.parse_args()
# ------------------------ input & output ------------------------
w = args.fidelity_weight
input_video = False
if args.input_path.endswith(('jpg', 'jpeg', 'png', 'JPG', 'JPEG', 'PNG')): # input single img path
input_img_list = [args.input_path]
result_root = f'results/test_img_{w}'
elif args.input_path.endswith(('mp4', 'mov', 'avi', 'MP4', 'MOV', 'AVI')): # input video path
from basicsr.utils.video_util import VideoReader, VideoWriter
input_img_list = []
vidreader = VideoReader(args.input_path)
image = vidreader.get_frame()
while image is not None:
input_img_list.append(image)
image = vidreader.get_frame()
audio = vidreader.get_audio()
fps = vidreader.get_fps() if args.save_video_fps is None else args.save_video_fps
video_name = os.path.basename(args.input_path)[:-4]
result_root = f'results/{video_name}_{w}'
input_video = True
vidreader.close()
else: # input img folder
if args.input_path.endswith('/'): # solve when path ends with /
args.input_path = args.input_path[:-1]
# scan all the jpg and png images
input_img_list = sorted(glob.glob(os.path.join(args.input_path, '*.[jpJP][pnPN]*[gG]')))
result_root = f'results/{os.path.basename(args.input_path)}_{w}'
if not args.output_path is None: # set output path
result_root = args.output_path
test_img_num = len(input_img_list)
if test_img_num == 0:
raise FileNotFoundError('No input image/video is found...\n'
'\tNote that --input_path for video should end with .mp4|.mov|.avi')
# ------------------ set up background upsampler ------------------
if args.bg_upsampler == 'realesrgan':
bg_upsampler = set_realesrgan()
else:
bg_upsampler = None
# ------------------ set up face upsampler ------------------
if args.face_upsample:
if bg_upsampler is not None:
face_upsampler = bg_upsampler
else:
face_upsampler = set_realesrgan()
else:
face_upsampler = None
# ------------------ set up CodeFormer restorer -------------------
net = ARCH_REGISTRY.get('CodeFormer')(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9,
connect_list=['32', '64', '128', '256']).to(device)
# ckpt_path = 'weights/CodeFormer/codeformer.pth'
ckpt_path = load_file_from_url(url=pretrain_model_url['restoration'],
model_dir='weights/CodeFormer', progress=True, file_name=None)
checkpoint = torch.load(ckpt_path)['params_ema']
net.load_state_dict(checkpoint)
net.eval()
# ------------------ set up FaceRestoreHelper -------------------
# large det_model: 'YOLOv5l', 'retinaface_resnet50'
# small det_model: 'YOLOv5n', 'retinaface_mobile0.25'
if not args.has_aligned:
print(f'Face detection model: {args.detection_model}')
if bg_upsampler is not None:
print(f'Background upsampling: True, Face upsampling: {args.face_upsample}')
else:
print(f'Background upsampling: False, Face upsampling: {args.face_upsample}')
face_helper = FaceRestoreHelper(
args.upscale,
face_size=512,
crop_ratio=(1, 1),
det_model = args.detection_model,
save_ext='png',
use_parse=True,
device=device)
# -------------------- start to processing ---------------------
for i, img_path in enumerate(input_img_list):
# clean all the intermediate results to process the next image
face_helper.clean_all()
if isinstance(img_path, str):
img_name = os.path.basename(img_path)
basename, ext = os.path.splitext(img_name)
print(f'[{i+1}/{test_img_num}] Processing: {img_name}')
img = cv2.imread(img_path, cv2.IMREAD_COLOR)
else: # for video processing
basename = str(i).zfill(6)
img_name = f'{video_name}_{basename}' if input_video else basename
print(f'[{i+1}/{test_img_num}] Processing: {img_name}')
img = img_path
if args.has_aligned:
# the input faces are already cropped and aligned
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
face_helper.is_gray = is_gray(img, threshold=10)
if face_helper.is_gray:
print('Grayscale input: True')
face_helper.cropped_faces = [img]
else:
face_helper.read_image(img)
# get face landmarks for each face
num_det_faces = face_helper.get_face_landmarks_5(
only_center_face=args.only_center_face, resize=640, eye_dist_threshold=5)
print(f'\tdetect {num_det_faces} faces')
# align and warp each face
face_helper.align_warp_face()
# face restoration for each cropped face
for idx, cropped_face in enumerate(face_helper.cropped_faces):
# prepare data
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
try:
with torch.no_grad():
output = net(cropped_face_t, w=w, adain=True)[0]
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
del output
torch.cuda.empty_cache()
except Exception as error:
print(f'\tFailed inference for CodeFormer: {error}')
restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))
restored_face = restored_face.astype('uint8')
face_helper.add_restored_face(restored_face, cropped_face)
# paste_back
if not args.has_aligned:
# upsample the background
if bg_upsampler is not None:
# Now only support RealESRGAN for upsampling background
bg_img = bg_upsampler.enhance(img, outscale=args.upscale)[0]
else:
bg_img = None
face_helper.get_inverse_affine(None)
# paste each restored face to the input image
if args.face_upsample and face_upsampler is not None:
restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=args.draw_box, face_upsampler=face_upsampler)
else:
restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=args.draw_box)
# save faces
for idx, (cropped_face, restored_face) in enumerate(zip(face_helper.cropped_faces, face_helper.restored_faces)):
# save cropped face
if not args.has_aligned:
save_crop_path = os.path.join(result_root, 'cropped_faces', f'{basename}_{idx:02d}.png')
imwrite(cropped_face, save_crop_path)
# save restored face
if args.has_aligned:
save_face_name = f'{basename}.png'
else:
save_face_name = f'{basename}_{idx:02d}.png'
if args.suffix is not None:
save_face_name = f'{save_face_name[:-4]}_{args.suffix}.png'
save_restore_path = os.path.join(result_root, 'restored_faces', save_face_name)
imwrite(restored_face, save_restore_path)
# save restored img
if not args.has_aligned and restored_img is not None:
if args.suffix is not None:
basename = f'{basename}_{args.suffix}'
save_restore_path = os.path.join(result_root, 'final_results', f'{basename}.png')
imwrite(restored_img, save_restore_path)
# save enhanced video
if input_video:
print('Video Saving...')
# load images
video_frames = []
img_list = sorted(glob.glob(os.path.join(result_root, 'final_results', '*.[jp][pn]g')))
for img_path in img_list:
img = cv2.imread(img_path)
video_frames.append(img)
# write images to video
height, width = video_frames[0].shape[:2]
if args.suffix is not None:
video_name = f'{video_name}_{args.suffix}.png'
save_restore_path = os.path.join(result_root, f'{video_name}.mp4')
vidwriter = VideoWriter(save_restore_path, height, width, fps, audio)
for f in video_frames:
vidwriter.write_frame(f)
vidwriter.close()
print(f'\nAll results are saved in {result_root}')
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/ZhangALiang/CodeFormer.git
[email protected]:ZhangALiang/CodeFormer.git
ZhangALiang
CodeFormer
CodeFormer
master

搜索帮助